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EXECUTIVE SUMMARY

This Exascale Computing Project (ECP) milestone report summarizes the status of all 30 ECP Applications
Development (AD) subprojects at the end of FY20. In October and November of 2020, a comprehensive
assessment of AD projects was conducted by the ECP leadership. Reviews occurred virtually between
October 27, 2020 and November 12, 2020. The review committee—consisting of the AD lead, deputy,
and L3—was tasked with evaluating each subproject’s progress in porting their codes to early exascale
architectures considered precursors to the planned exascale machines. This includes characterizing which
modules have been ported to multi-accelerator nodes, initial performance analyses, the status of software
integration, and a current vision of successes, obstacles, and next steps. As such, this report contains not
only an accurate snapshot of each subproject’s current status but also represents an unprecedentedly broad
account of experiences in porting large scientific applications to next-generation high-performance computing
architectures.

A high-level summary of the review outcome is provided in Tables 1 to 3. Several project teams were
asked to provide additional details on GPU performance and their impact on near future plans. However, the
general consensus of the review committees was that ECP application projects have made excellent progress
in FY20 and are well on track for a successful overall project completion.

Table 1: Review summary for KPP-1 applications. All listed FOM values are
extrapolated to the full machine.

AD L4 project Application area Execution risk Current FOM ratio
EXAALT Atomistic materials Low 350
ExaSky Cosmology Low 72.25
ExaSMR Nuclear energy Low 46.7
CANDLE Precision medicine for oncology Low 81.99
E3SM-MMF Earth system science Low 73
EQSIM Earthquakes Low 189
LatticeQCD Nuclear physics Medium 22.42
NWChemEx Chemistry Low 78.8
QMCPACK Quantum materials Low 37.1
WarpX Accelerator physics Low 114
WDMApp Magnetic fusion energy Medium 42.5

Table 2: Review summary for KPP-2 applications.

AD L4 project Application area Execution risk Milepost schedule
Combustion-PELE Combustion science Medium On track
ExaAM Advanced manufacturing High On track
ExaBiome Microbiome analysis Medium On track
ExaFEL Laser analytics Medium On track
ExaSGD Power grid Medium On track
ExaStar Astrophysics Medium On track
ExaWind Wind power High On track
GAMESS Quantum chemistry Medium On track
MFIX-Exa Chemical reactors Medium On track
Subsurface Subsurface flow High 3 months behind
Livermore NNSA national security Low On track
Los Alamos NNSA national security Low On track
Sandia NNSA national security Low On track
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Table 3: Review summary for KPP-3 co-design projects.

AD L4 project Motifs Current metric
AMReX AMR, regular grids 9
CEED FEM, unstructured grids 6
CODAR Data I/O 1
CoPA Particle methods, FFT 8
ExaGraph Graph traversal 4
ExaLearn ML, AI 1
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1. OVERVIEW OF APPLICATION DEVELOPMENT

Exascale systems enable game-changing advances in scientific, engineering, and national security applications
critical to the US US Department of Energy (DOE)’s mission. Such progress requires close coordination
among exascale application, algorithm, and software development to address key challenges, such as extreme
parallelism, reliability and resiliency, complex memory hierarchies, scaling to large systems, and data-intensive
science. For selected critical problems, the ECP is creating and enhancing the predictive capability of relevant
applications through the targeted development of requirements-based models, algorithms, and methods along
with the development and integration of required software technologies in support of application workflows.

Given the broad DOE and multi-agency demand for mission-critical modeling and simulation (M&S)
and data analytics computing (DAC) applications, AD is contributing to the development of the ECP
applications for DOE missions in science, energy, national security and the missions of other agencies, such
as the National Institutes of Health (NIH), National Science Foundation (NSF), National Oceanic and
Atmospheric Administration (NOAA), and National Aeronautics and Space Administration (NASA). For
DOE alone, this scope encompasses full development support for application teams within the mission space
of at least 10 DOE program offices. For other agency applications, the scope of AD is smaller and is one of
partnership through the provision of selected staff to development teams in need of expertise in computer
and computational science, applied mathematics, and high-performance computing (HPC).

To achieve these goals, AD includes six Level 3 (L3) Work Breakdown Structure (WBS) elements, each
with multiple subprojects at Level 4 (L4). These are described in the following sections. Two key performance
parameters (KPPs), KPP-1 and KPP-2, are used to measure the success of the AD application projects;
KPP-3 is used to measure the success of the AD co-design projects. KPP-1 performance is measured through
a uniquely defined FOM for each project. The meaning and requirements for each KPP are given in Table 4.

Table 4: KPP for ECP applications.

KPP ID Description of scope Threshold KPP Objective KPP Verification
action/evidence

KPP-1 Performance
improvement for
mission-critical problems

50% of selected
applications achieve
FOM improvement ≥ 50

100% of selected
applications achieve
FOM stretch goal

Independent assessment
of measured results that
threshold goal is met

KPP-2 Broaden the reach of
exascale science and
mission capability

50% of selected
applications can execute
their challenge problem

100% of selected
applications can execute
their challenge problem
stretch goal

Independent assessment
of mission application
readiness

KPP-3 Productive and
sustainable software
ecosystem

50% of the weighted
impact goals are met

100% of the weighted
impact stretch goals are
met

Independent assessment
verifying threshold goal
is met

1.1 Early and Pre-Exascale Hardware

In FY20, the AD projects had access to two categories of hardware at the DOE Oak Ridge Leadership
Computing Facility (OLCF) and Argonne Leadership Computing Facility (ALCF): (1) pre-exascale hardware
that includes Summit at OLCF and (2) early exascale hardware. Summit contains NVIDIA GPUs supported
by IBM multicore CPUs.1 The early exascale hardware contains AMD and Intel hardware that are predelivery
versions of the hardware that will be featured on Frontier and Aurora, respectively. The AMD early platforms
Tulip, Poplar, and Lyra are supported by the Frontier Center of Excellence (COE) at Cray and the OLCF.
The Intel early platforms Iris and Yarrow are supported by the Joint Laboratory for System Evaluation
(JLSE) at ALCF.

1https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit
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1.2 2020 AD Review

In the FY19 AD review described in Early Application Results on Pre-exascale Architecture with Analysis of
Performance Challenges and Projections [1], we evaluated the projects based on five charge questions that
address:

1. defined “base” and “stretch” objectives;

2. progress on pre-exascale hardware;

3. defined FOMs and capability plans for KPP-1 and KPP-2, respectively;

4. defined 2020 and out year plans with defined risks and mitigation strategies based on early hardware
progress; and

5. identified critical dependencies with Software Technology (ST) and Co-Design (CD) projects.

For the FY20 review, the projects are evaluated on three sets of charge questions for KPP-1, KPP-2, and CD
projects. The KPP-1 charge questions are as follows.

1. Explain how your current KPP-1 value was calculated and how it relates to your exascale challenge
problem, including any assumptions, caveats, simplifications, and so on.

2. Describe your performance on Summit (or equivalent) as completely as possible. Where possible, make
meaningful performance comparisons, characterize GPU utilization, and identify bottleneck resources.

3. Describe your progress on Iris and/or Tulip to date. On a scale of 1–5, where 5 is the most confident,
how confident are you that you will successfully meet the KPP-1 threshold on Aurora?

4. On a scale of 1–5, where 5 is the most confident, how confident are you that you will successfully meet
the KPP-1 threshold on Frontier?

5. List the critical dependencies for your project. Which are the biggest risks to your project’s successful
completion?

The KPP-2 charge questions are as follows.

1. Summarize your progress toward executing your project’s challenge problem, including a status of
project mileposts.

2. Describe your performance on Summit (or equivalent) as completely as possible. Where possible, make
meaningful performance comparisons, characterize GPU utilization, and identify bottleneck resources.

3. Describe your progress on Iris and/or Tulip to date.

4. On a scale of 1–5, where 5 is the most confident, how confident are you that you will successfully meet
the KPP-2 threshold on Aurora?

5. On a scale of 1–5, where 5 is the most confident, how confident are you that you will successfully meet
the KPP-2 threshold on Frontier?

6. List the critical dependencies for your project. Which are the biggest risks to your project’s successful
completion?

Finally, the CD charge questions are as follows.

1. Summarize your progress toward your KPP-3 objectives.

2. Describe your performance on Summit (or equivalent) as completely as possible. In particular, charac-
terize GPU utilization and identify bottleneck resources.

3. Describe your progress on Iris and/or Tulip to date.
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4. List the critical dependencies for your project. Which are the biggest risks to your project’s successful
completion?

As opposed to the FY18 and FY19 reviews, which both featured panels of external subject matter experts
(SMEs), the FY20 review used the L3 leadership team as the subject matter reviewers. This choice was made
due to the focus on application performance, particularly on early exascale hardware that has restrictive
nondisclosure agreement (NDA) requirements, as opposed to science objectives. Also, due to restrictions
imposed by COVID-19, the FY20 review was performed completely online. Reviews for each project were
performed in 2 h blocks starting on October 27, 2020 and ending on November 12, 2020.

2. KEY PERFORMANCE PARAMETERS FOR AD

The AD focus area supports the development and evolved design of mission-critical science and engineering
codes for efficient execution on exascale platforms. The ECP distinguishes between the code, which is typically
a general capability, and an application, which uses the code to address a specific scientific or engineering
question. A key concept is the definition of an exascale challenge problem. Each AD application code
team must define an application challenge problem that is scientifically impactful and requires exascale-level
resources to execute. Each exascale challenge problem targets a key DOE science or mission need and is the
basis for quantitative measurements of success for each of the AD projects.

There are two measures of success used for AD application projects, referred to generically as the first
and second of the ECP KPPs (KPP-1 and KPP-2). Projects are assigned exclusively to one of these two
KPP groups, and each project is responsible for meeting the corresponding specific requirements. The KPP-1
applications (Table 5) and applications targeting KPP-2 (Table 6) are required to provide a detailed milestone
plan that outlines all needed work to enable the successful execution of their exascale challenge problem.
These milestone plans and the teams’ progress in executing them are reviewed annually by AD leadership
and external SMEs as part of the AD annual assessment. Progress toward KPP-2 is tracked between reviews
with a dashboard to monitor timely milestone delivery. The KPP assignments were determined by the nature
of the exascale challenge problem and the maturity of the individual code projects.

2.1 KPP-1

KPP-1 quantitatively measures the increased capability of applications on exascale platforms compared with
their capability on the leadership-class machines available at the start of the project. Each application that
targets KPP-1 is required to define a quantitative FOM that represents the rate of science work for their
defined exascale challenge problem. FOM definitions are specific to an application area and are reviewed
internally and externally to the ECP to confirm that they are appropriate representations of capability
improvements for that domain. Because exascale challenge problems cannot be executed on petascale
resources, the FOM will typically account for differences in problem size, numerical precision, algorithm
complexity, and physical model enhancement to allow for an accurate measurement of the ultimate FOM
improvement used to satisfy KPP-1.

For KPP-1, one key concept is the performance baseline, which is a quantitative measure of an application
FOM that uses the fastest computers available at the inception of the ECP against which the final FOM
improvement is measured. This includes systems at the ALCF, NERSC, and OLCF, such as Mira, Theta,
Cori, and Titan—systems in the 10–20 PFlops range. The expectation is that applications will run at full
scale on at least one of these systems to establish the performance baseline. In cases where this is not
possible, the largest scale run is scaled to the full system, assuming perfect parallel efficiency. A challenging
situation arises when the final exascale challenge problem requires capabilities that did not exist at the
start of the project (e.g., new code coupling, new physics models, or algorithmic approaches). For these
applications, approximate estimates are constructed from individual code components with the expectation
that the baseline can be refined, if necessary, once the new capabilities are in place.

Applications that target KPP-1 are required to demonstrate improvements to their FOM throughout
the project on pre-exascale platforms. The teams’ progress in improving their FOMs and preparing their
codes for exascale architectures is reviewed annually by AD leadership and external SMEs as part of the AD
annual assessment. Progress toward KPP-1 is tracked between reviews with a dashboard to monitor each
application’s current FOM increase against their performance baseline.
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Table 5: ECP applications targeting KPP-1.

Project name Short description Lead lab Stakeholder
program

LatticeQCD Exascale lattice gauge theory opportunities and
requirements for nuclear and high-energy physics

FNAL DOE NP, HEP

NWChemEx Stress-resistant crops and efficient biomass
catalysts

PNNL DOE BER,
BES

EXAALT Molecular dynamics at the exascale LANL DOE BES,
FES, NE

QMCPACK Find, predict, and control material properties ORNL DOE BES

ExaSMR Coupled Monte Carlo neutronics and fluid flow
simulation of small modular reactors

ORNL DOE NE

WDMApp High-fidelity whole device modeling of
magnetically confined plasmas

PPPL DOE FES

WarpX Plasma wakefield accelerator design LBNL DOE HEP

ExaSky Cosmological probe of the Standard Model ANL DOE HEP

EQSIM Seismic hazard risk assessment LBNL DOE NNSA,
NE, EERE

E3SM-MMF Regional assessments in earth systems models SNL DOE BER

CANDLE Accelerate and translate cancer research ANL NIH
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Table 6: ECP applications targeting KPP-2.

Project name Short description Lead lab Stakeholder
program

GAMESS Biofuel catalyst design Ames DOE BES

ExaAM Additive manufacturing of qualifiable metal parts ORNL DOE NNSA,
EERE

ExaWind Predictive wind plant flow modeling NREL DOE EERE

Combustion-
Pele

Combustion engine and gas turbine design SNL DOE BES,
EERE

MFIX-Exa Multiphase flow reactor design NETL DOE EERE

ExaStar Demystify the origin of chemical elements LBNL DOE NP

Subsurface Carbon capture, fossil fuel extraction, waste
disposal

LBNL DOE BES,
EERE, NE, FE

ExaSGD Reliable and efficient planning of the power grid ORNL DOE EDER,
CESER, EERE

ExaBiome Metagenomics LBNL DOE BER

ExaFEL Light source-enabled analysis of molecular
structure

SLAC DOE BES

LANL ATDM Ristra application LANL DOE NNSA

LLNL ATDM MARBL multiphysics code LLNL DOE NNSA

SNL ATDM SPARC for virtual flight testing and EMPIRE for
electromagnetic plasma Physics

SNL DOE NNSA
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Because an exascale machine promises a rate approximately 50× the theoretical flop rate of the fastest
currently deployed machine, the ECP sets the minimum FOM improvement aggressively at a factor of 50.
The ECP supports complex multiphysics codes that put great demand on various aspects of the system: I/O
capacity and bandwidth, memory bandwidth, and memory latency (i.e., not just floating-point instruction
capacity and throughput). Many applications are not based on algorithms that can perfectly use specialized
hardware features. Aside from improved use of hardware use, one key focus of the ECP is the development
of innovative algorithms that can achieve the same accuracy more efficiently. In cases for which new
methodologies are developed (e.g., using lower complexity algorithms or reduced iteration counts), AD
projects must demonstrate equivalent or better accuracy relative to the baseline approach. Incentivizing
algorithmic advances is critical to the long-term impact of the ECP in the computational science community.
Although risky, any projects that are successful in this approach could have FOM ratios much greater than
50. However, the final KPP-1 calculation gives no additional credit for measurements beyond the target value
of 50, so one extreme success will not skew the overall project metrics.

FOM formulations were initially developed by the subproject leads and were iterated upon and vetted
over a 2 year period. This includes a panel of external SMEs; technical ECP leadership across the entire
management team; and experts at ALCF, NERSC, and the OLCF, as well as in ECP-wide meetings and
previous project reviews. Furthermore, the KPP-1 definition, including threshold and objective targets, was
modified from the original plans based on extensive external feedback.

The challenge problems defined by all KPP-1 and KPP-2 applications represent ambitious but realizable
goals that take into account all the risks and uncertainty of such a complex project. Given the presence of
accelerated schedules, highly specialized hardware, evolving software and application-level libraries, and open
questions about programming models and compiler technology, some of the applications are likely to fall
behind their initial schedule. On the other hand, if many anticipated risks are never triggered or are readily
mitigated, some or even all the applications might achieve their individual KPP goals earlier than expected.
This best-case scenario is accommodated by defining objective KPP values for each application subproject,
which are based on stretch goals. Stretch goals are extended challenge problem definitions (i.e., challenge
problems that require additional physics capabilities, code coupling, more complex geometries, or, in some
cases, even larger problem sizes). Stretch goals represent a best-case scenario that requires many key pieces
to fall into place, but they stand as critical definitions of the most ambitious realizable goals each project can
envision within the scope of the current project.

Given the specialized nature of the hardware and the breadth and complexity of the application projects,
it is highly unlikely that all KPP-1 applications will meet or exceed the target FOM increase. Therefore, the
ECP sets the threshold value for project success at 50% of KPP-1 applications, which is determined by the
ECP to be an ambitious but attainable goal and concurred with by the ECP’s DOE sponsors. The objective
value for KPP-1 is that 100% of the application subprojects meet or exceed their target FOM increase and
also demonstrate their stretch goal. This objective value is considered an extremely ambitious goal that will
further drive the science and engineering goals of ECP applications.

2.2 KPP-2

KPP-2 is intended to assess the successful creation of new exascale science and engineering DOE mission
application capabilities. Applications that target KPP-2 are required to define an exascale challenge problem
that represents a significant capability advance in its area of interest to DOE. These challenge problem
targets are reviewed internally and externally to confirm that they are impactful, challenging, tractable, and
of interest to a key DOE stakeholder. The distinguishing feature of KPP-2 applications relative to those
that target KPP-1 is the amount of new capability that must be developed to execute the exascale challenge
problem. Many KPP-2 applications lack sufficient code infrastructure from which to calculate an FOM
performance baseline (e.g., they started in the ECP as prototypes). Without a well-defined starting point at
the 10–20 PFlops scale, it is unclear what FOM improvement would correspond to a successful outcome. A
more appropriate measure of success for these applications is whether the necessary capability to execute their
exascale challenge problems is in place at the end of the project, not the relative performance improvement
throughout the project.

Applications that target KPP-2 (Table 6) are required to provide a detailed milestone plan that outlines
all the work needed to execute their exascale challenge problem successfully. These milestone plans and the
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teams’ progress in executing them are reviewed annually by AD leadership and external SMEs as part of the
AD annual assessment. Progress toward KPP-2 is tracked between reviews with a dashboard to monitor
timely milestone delivery.

To quantitatively assess the successful completion of KPP-2, applications must demonstrate the capability
to effectively use exascale hardware to execute their challenge problem. Because access to exascale resources
might be limited and performance optimization might not yet be complete, KPP-2 applications can demonstrate
exascale capability without running their challenge problem at full scale. This requires application teams to
demonstrate: (1) parallel scalability sufficient to run at full exascale; (2) the ability to use specialized exascale
hardware features, such as accelerators; and (3) the completion of all necessary physics and algorithmic
capabilities to successfully perform the challenge problem. Internal and external review will confirm whether
a team has satisfactorily met all three requirements. The metric for success is exascale capability; a code that
runs on an exascale machine at the same rate or slower than on a pre-exascale machine will not be judged to
be successful.

The ECP National Nuclear Security Administration (NNSA) applications are primarily focused on
developing new and essential mission capabilities at exascale. All four NNSA ECP application projects (§§ 7.1,
7.2, 7.3, and 7.4) therefore target the ECP’s KPP-2 metric. Because the national security nature of the NNSA
challenge problems require a secure NNSA exascale computer (El Capitan), which will not be available before
the ECP’s current schedule to complete, progress and successful development of exascale capability by these
applications cannot be assessed in the same way as the open DOE Office of Science (SC) applications. Instead,
the ECP will leverage the NNSA Advanced Simulation and Computing (ASC) program milestone review and
certification process by which these NNSA ECP applications will be assessed annually from FY19–23 for the
necessary physics and algorithmic capabilities needed to execute their exascale challenge problems. The rigor
of this process ensures that successfully completing these milestones through the end of the ECP does indeed
verify that these applications can execute their exascale challenge problem once El Capitan enters its secure
computing phase in FY24.

The applications that target KPP-2 are working toward a significant advance in simulation capability (i.e.,
physics and numerical fidelity) in a relatively short time. As such, it is unlikely that all applications will be
able to fully complete these ambitious objectives. Thus, the ECP sets the threshold value for project success
at 50% of KPP-2 applications, which is determined by the ECP to be an ambitious but attainable goal and is
concurred with by the ECP’s DOE sponsors. Because the review and assessment criteria are slightly different
for the NNSA applications, two out of the three must demonstrate exascale capabilities to meet the KPP-2
threshold.

Like KPP-1 applications, each KPP-2 application defines a stretch challenge problem that is above and
beyond the baseline exascale challenge problem. The objective value for KPP-2 is that 100% of the application
subprojects demonstrate their stretch challenge problem.

2.3 KPP-3 for Co-Design

KPP-3 is used to measure the impact of co-design software products and the projects in the ECP’s ST scope.
ECP KPP-3 impact goals and metrics are the primary high-level means of connecting ECP co-design efforts
to the ECP effort as a whole. Achieving these KPP-3 impact goals defines how the ECP’s co-design centers
are reviewed and how their success is determined.

A KPP-3 integration goal for co-design is defined to be its impact and use on its application customer
codes, primarily the AD teams that are striving to meet KPP-1 and KPP-2 goals. The weights for the
co-design center goals are determined by how many application teams rely on their software products. Of the
co-design centers, AMReX and CEED are considered high-impact and will be assigned a weight of 2; CoPA is
considered medium impact and will be assigned a weight of 1; and CODAR, ExaLearn, and ExaGraph are
considered lower impact and will be assigned a weight of 1/2. This goal is explicitly tracked and reported for
satisfying KPP-3 requirements.

Verifying the success of this goal will be documented as part of the capability and performance demon-
strations on Aurora and Frontier needed to demonstrate completion of KPP-1 and KPP-2 objectives. In
cases for which co-design capabilities are not explicitly required to meet KPP-1 and KPP-2 goals, separate
integration runs will be performed for KPP-3 verification.

For all co-design centers, a passing score and a stretch goal on the number of applications that they will be
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integrated into and demonstrated on an exascale platform (Aurora and/or Frontier) have been defined. The
KPP-3 threshold is defined as 50% of the products meeting or exceeding their weighted impact goals. The
weighted impact stretch goal is the maximum reasonably achievable integration score for a co-design center if
capability integrations are successful with all potential ECP applications on both ECP exascale platforms.
The KPP-3 objective is that 100 % of the products meet or exceed their weighted impact stretch goals.

3. CHEMISTRY AND MATERIALS APPLICATIONS

End State: Deliver a broad array of science-based chemistry and materials applications that
can provide, through effective exploitation of exascale HPC technology, breakthrough modeling
and simulation capabilities that precisely describe the underlying properties of matter needed to
optimize and control the design of new materials and energy technologies.

The Chemistry and Materials Applications (CM) L3 area (Table 7) focuses on simulation capabilities
that aim to precisely describe the underlying properties of matter needed to optimize and control the design
of new materials and energy technologies. The underlying physics that governs these application areas is
computationally challenging. Capturing quantum effects can introduce significant communication nonlocality
and computational complexity, for example. Because efficiently scaling these methods to exascale is likely to
be difficult, a key assumption of the CM WBS L3 is that the L4 subproject leads already have significant
experience with their methods and algorithms on petascale HPC resources and thus have a good understanding
of where the biggest challenges to scalability are mostly likely to lie. The ECP is providing an essential
catalyst to help propel these efforts forward so that key DOE priorities can be achieved. Given that this is a
broad and very fundamental area of research with applications to many technology areas, it is understood
that the ECP cannot provide exhaustive coverage of this area.

Table 7: Summary of supported CM L4 projects.

WBS
number

Short name Project short description KPP-X

2.2.1.01 LatticeQCD Exascale lattice gauge theory opportunities and
requirements for nuclear and high energy physics

KPP-1

2.2.1.02 NWChemEx Stress-resistant crops and efficient biomass Catalysts KPP-1

2.2.1.03 GAMESS Biofuel catalyst design KPP-2

2.2.1.04 EXAALT Molecular dynamics at the exascale KPP-1

2.2.1.05 ExaAM Additive manufacturing of qualifiable metal parts KPP-2

2.2.1.06 QMCPACK Find, predict, and control material properties KPP-1

3.1 LatticeQCD

Atomic nuclei and most particles produced by high-energy accelerators are tightly bound composites of quarks
and gluons. The fundamental interaction of these quarks and gluons is known as the nuclear or strong force,
which is one of the four fundamental forces of nature: strong, weak, electromagnetic, and gravity. These
nuclear interactions are defined with mathematical precision by quantum chromodynamics (QCD), and HPC
is required to predict the consequences of this underlying theory. The properties of the resulting bound states
and the nature of their strong, highly nonlinear interactions are the central focus of nuclear physics and the
context in which high-energy physics research must be conducted.

The strong interactions between quarks and gluons represent 99% of the mass in the visible universe.
Understanding these interactions and the phenomena that result is the central goal of nuclear physics. The
couplings between the quarks and the W, Z, and Higgs bosons lie at the heart of the Standard Model (SM) of
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particle physics and can be studied, often with exquisite precision, by measuring the properties of the bound
states formed from these quarks and gluons. QCD is the fundamental theory of the interactions between
quarks and gluons and can be solved only through massive computation. Over the last three decades, QCD
computations have driven and benefited from the spectacular advances in HPC. Computing at the exascale is
essential for reaching two decadal challenges of central importance to nuclear and high-energy physics, which
are the challenge problems of focus for the LatticeQCD project.

The advance to exascale capability over the coming decade offers exciting opportunities for groundbreaking
discoveries in high-energy and nuclear physics. Exascale computing could realistically simulate the atomic
nucleus and discover the first harbingers of new laws of nature, revealing a deeper theory that underlies the
present “elementary” particles. These possibilities can be achieved only if new and impending advances in
computer science can be harnessed to provide a software framework that allows lattice QCD code to efficiently
exploit exascale architectures and application scientists to create and refine that code as new challenges and
ideas emerge.

3.1.1 LatticeQCD: Science Challenge Problem Description

Six computations are representative of three of the common fermion actions that USQCD currently uses:
(1) the highly improved staggered quark (HISQ) action, (2) the domain wall fermion (DWF) action, and
(3) the Wilson-clover fermion action. The FOM for each action is determined from two benchmark components:
the generation of a gauge configuration and a typical suite of measurements performed with that gauge
configuration.

HISQ : This benchmark (Table 8) performs the calculations needed to measure meson masses and decay
constants. The benchmark problem measures the rate of generating a new gauge configuration by
using an molecular dynamics (MD) algorithm and the rate of making measurements on the gauge-field
configuration.

DWF : As with the HISQ action, two FOMs for the DWF component were adopted. The first measures the
rate at which a current state-of-the-art gauge field ensemble can be generated, and the second calculates
a suite of observable by using this ensemble. Table 9 providea problem specifications.

Wilson-clover : The Clover benchmark has two components (Table 10). The first is the rate at which
dynamical Clover fermion lattices can be generated by using an MD algorithm. Several solutions of the
Dirac equation are computed and contracted to construct observables as part of the second component
of the benchmark.

3.1.2 LatticeQCD: KPP Stretch Goal

The stretch goal is simply stated: instead of choosing the better system F for each fermion type, the
team will compute the full FOM for both Aurora and Frontier on their own. The stretch goal is then that
both the LatticeQCD base is optimized for both Aurora and Frontier to the point that FOM(Aurora) and
FOM(Frontier) each exceed 50×.

3.1.3 LatticeQCD: Figure of Merit

The base FOM will be the arithmetic mean of the six-component FOMs. Those components comprises pairs
of components corresponding to the three fermion types: HISQ, DWF, and Wilson-clover. For each fermion
type, each pair comprises a gauge-configuration-generation component and a measurement component. Each
of the component FOMs is defined to be

FOM(Ba → Fb) =
ta(B)fa(B)nb
tb(F )fb(F )na

, (1)

where B and F represent the baseline and final system; a and b represent baseline and target problems; and
t, f , and n represent the wall time, fraction of the system used, assuming the benchmark run is part of a
large ensemble, and complexity of the problem (Flops). After computing the FOM for each fermion type on
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Table 8: LatticeQCD HISQ challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Meson decay constants and masses from first principles quantum
chromodynamics.

Numerical approach,
algorithms

MD, sparse matrix solution, deflation.

Simulation details: problem
size, complexity, geometry, and
so on.

Generate part of a lattice ensemble with lattice spacing of 0.03 fm on a
2403 × 384 grid with four flavors of highly improved staggered-fermion
sea quarks at their physical masses but with degenerate up and down
quarks. Specifically, run 4 molecular dynamics time units. Measure a
standard set of meson decay constants and masses on those lattices.

Demonstration calculation
requirements

An equilibrated ensemble is needed, which is estimated to require at
least 1000 MD time units of evolution. Measurements could be done on
a single lattice.

Resource requirements to run
demonstration calculation

To equilibrate the lattice in preparation for the demonstration
calculation, 150,000 socket-hours on the exascale machine are needed,
where a performance of 100 GFlops per socket is assumed. To run the
demonstration calculation of only two MD time units, approximately 10
socket hours for gauge-field generation are required. To demonstrate a
single measurement, approximately 100 socket hours are required.

Table 9: LatticeQCD DWF challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Study the decays of K, D, and B mesons. Examine simple single-hadron
final states and more complex processes that involve multi-hadron final
states, decay-induced mixing, long-distance effects, and E&M processes.

Numerical approach,
algorithms

Use the methods of lattice QCD and a chiral fermion formulation. E&M
effects are treated with infinite-volume methods. Linear and bilinear
combinations of composite operators are renormalized
non-perturbatively. Requires Lanzcos eigenvectors, deflation, all-to-all
propagators, all-mode-averaging, open boundary conditions, and Fourier
acceleration.

Simulation details: problem
size, complexity, geometry, and
so on.

The target lattice volume is 963 × 384 with a lattice spacing of
a = 0.055 fm. The Wilson gauge action and Mobius DWF would be
used.

Demonstration calculation
requirements

• MC evolution for 5 time units of the physical mass, 963 × 384,
a = 0.55 fm ensemble. Start with a replicated equilibrated
configuration constructed from 162 periodic copies of a 323 × 64
configuration.

• Standard suite of measurements on a single configuration.

Resource requirements to run
demonstration calculation

25% of the full exascale machine for 6 h for evolution and for 10 h for
measurements.
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Table 10: LatticeQCD Wilson-clover challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Hadronic correlation functions and energies from QCD. On an ensemble
of gauge fields, construct Euclidean correlation functions within
many-body systems.

Numerical approach,
algorithms

Lattice QCD with a minimum grid size of 643 × 128 and lattice spacing
of 0.091 fm. Use the hybrid MC MD algorithm and sparse matrix
solutions. Analysis methods will use multiple right-hand side solvers.

Simulation details: problem
size, complexity, geometry, and
so on.

Generate part of an isotropic Clover ensemble with two light physical
quark masses and one strange quark on a lattice size of 963 × 256 and a
lattice spacing of 0.06 fm. Specifically, run 10 trajectories (MC time
units) to observe the behavior and stability of the algorithm.

Demonstration calculation
requirements

A fully equilibrated lattice is needed. This will require about 1000 MC
time units. Measurement tests can be done on a single lattice.

Resource requirements to run
demonstration calculation

Need to fully equilibrate an ensemble before measurements. Using
Summit as a baseline, this equilibration is estimated to require about
10,000 Summit node hours. For the FOM, 10 MC time units are
required, needing ∼3000 Summit node-hours. Will test on a range of
machine sizes, but the minimum is 256 Summit nodes. For the
measurement tests, a range of partitions will be tested on and can scale
to 2500 Summit nodes. This test will require approximately 1000
Summit node hours.

Table 11: The six FOM-component baseline values from Titan and Mira. The
machine fraction is based on 18,688 Titan nodes and 49,152 Mira nodes.

Component t(B)(h) Machine f(B) t(B)f(B)

DWF gen. 0.667 Mira 0.1667 3.97× 10−2

DWF meas. 5.26 Mira 0.6667 3.51× 10−0

HISQ gen. 1.58 Mira 0.2500 4.83× 10−2

HISQ meas. 1.73 Mira 0.2500 2.60× 10−2

Clover gen. 1.11 Titan 0.0548 7.57× 10−4

Clover meas. 0.0473 Titan 0.0068 5.73× 10−5

Aurora and Frontier, the team will choose the better result for each fermion type and take the arithmetic
mean of those three numbers to obtain the base KPP goal.

FOM Update

The current LatticeQCD FOM calculation for each of our six components is summarized in Table 12.
Values for the Mira/Titan baseline are shown in Table 11. The improvement ratios in the last column
of Table 12 are calculated as in Eq. (1) for each component from values in the two tables. The current
resulting average is 22.42. The figures in the two tables are based entirely on Mira/Titan-scale problems, so
the difficulty factors in Eq. (1) were not needed. We are in the process of scaling up the problems to our
challenge-problem size, in which case we will need them. For example, the HISQ measurement problem will
grow from a 1443 × 288 lattice on 144 Summit nodes to a 1923 × 384 lattice on 432 Summit nodes and, in the
process, decrease the lattice spacing from 0.042 to 0.03 fm. Similar increases are being applied to the other
fermion discretizations.

Because target cases are too diverse to quantify, our significant reduction is not included in our FOM
in the effort to calculate multiquark matrix elements. These matrix elements appear in calculations that
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Table 12: Summary of the six current FY20 Q4 LatticeQCD component FOMs
from Summit. The fraction of Summit is based on its full complement of 4608
nodes. The FOM in the last column is the ratio of the baseline value t(B)f(B)
in Table 11 to the t(F )f(F ) column in this table.

Component T (F )(h) f(F ) t(F )f(F ) FOM

DWF gen. 1.187 0.0278 3.30× 10−2 3.37
DWF meas. 40.05 0.0278 1.11× 10−0 3.15
HISQ gen. 1.51 0.0208 3.15× 10−2 12.56
HISQ meas. 0.47 0.0312 1.47× 10−2 29.45
Clover gen. 0.109 0.0069 7.57× 10−4 80.35
Clover meas. 0.0165 0.0035 5.73× 10−5 5.65

Mean 22.42

involve light nuclei, such as deuterium and lithium. The number of quark line routings in such cases grows
factorially with the number of quarks, thus presenting an enormous combinatoric problem. During the ECP,
the Jefferson Laboratory group used graph theory to organize the calculation in a way that largely reduced
the computational requirement, making it possible to consider ab initio calculations for the first time at ECP
challenge-problem sizes. The new method has been applied to the recent successful calculation of the decay
rates of an exotic hybrid meson resonance before any experimental measurement [2].

3.1.4 LatticeQCD: Progress on Early and Pre-Exascale Hardware

Performance on Summit

The performance improvement on Summit comes in approximately equal parts from greater computing
power and improved algorithms. Given the importance of algorithms, approximately half of our ECP effort is
devoted to finding better algorithms. Here is a list of key algorithmic improvements:

• Adaptive multigrid solvers: Before the ECP, some of our team developed an adaptive multigrid
solver for the clover fermion discretization, originally designed to optimize measurements for processes
that involve light quarks. During the ECP, the Jefferson Laboratory group found a way to incorporate
the multigrid solver in the generation of gauge-field configurations. This was the main reason for the
improvement factor of 80.35 in the FOM table for this component. Applying multigrid methods to
the other fermion discretizations is highly nontrivial. During this ECP, a combination of the Boston
University group and NVIDIA discovered an implementation for the HISQ discretization. It was applied
to the HISQ measurement component, contributing a good part of the 29.45 improvement factor. The
same team recently discovered an implementation for the domain-wall discretization [3].

• Communication-avoiding strategies for sparse matrix solves: Limitations in the internode
network present a serious bottleneck for our calculations, so it is important to find algorithms that limit
or avoid communication.

– Mixed-precision solvers: Most sparse-matrix solvers can be implemented with low-precision
preconditioning with high-precision refinement. This strategy allows the bulk of the calculation to
proceed with fewer bytes per communicated value, thereby reducing message sizes.

– Split-grid methods for solvers and eigensolvers: In some cases, it is possible to reassign a full-
machine-partition workload to multiple parallel subpartitions. Message traffic is reduced in
the process. This method was developed by the Brookhaven-Columbia-Riken collaboration for
eigensolvers and sparse-matrix solves, where it has proven to be cost effective.

• Fourier-accelerated gluon-configuration generation: With finer lattice spacings planned for
exascale calculations, it takes much longer to generate statistically independent gauge configurations.
This effect is manifested in growing autocorrelation times in the Markov chain that generates them.
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This phenomenon is well-known, but there are no effective methods for mitigating it yet. Our ECP
“critical-slowing-down” group has devoted some effort to finding such methods. Thus far, it has succeeded
in obtaining a 13× decrease in autocorrelations with weak pure-gluon evolution.

• Contractions: The integration over fermion fields gives rise to a huge combinatoric challenge in
the evaluation of the graphs via tensor contractions. With the finer lattice spacings planned for our
project, the basis size that represents the particles grows, leading to increased complexity for many-body
nuclear systems. Our project has devoted effort to finding optimal methods for evaluating these tensor
contractions and has found a 3times improvement for meson systems and a 70× improvement for
three-nucleon systems (tritium). These developments have made calculations for such systems viable on
Exascale systems.

• NVIDIA NVSHMEM and kernel fusion: Some of our calculations enter the strong-scaling regime
(e.g., the coarse-lattice phase of the multigrid algorithm). In this regime, message-passing and kernel-
launching latencies limit performance. The NVIDIA NVSHMEM feature bypasses message passing
interface (MPI), and kernel fusion reduced overhead. These features improve multinode performance by
approximately 20 to 30 %.

• NVIDIA tensor cores: The NVIDIA tensor cores perform small-matrix operations with high efficiency.
We are seeing some significant performance gains in some of our kernels when they are reorganized to
take advantage of them.

Next Steps

In the coming year, we will continue the diversification of QUDA with particular focus on SyCL and HIP.
We will continue to optimize Grid for Intel and AMD processors as they become available. In both cases, we
will be connecting our high-level codes with QUDA and Grid and testing the full suite on available hardware.
We will also continue implementing QDP-JIT and QDP++ on Intel and AMD architectures.

3.2 NWChemEx

The strategic goals of the NWChemEx project are as follows:

• To provide the molecular modeling capabilities needed to address two science challenges involved in the
development of advanced biofuels: the design of feedstock for the efficient production of biomass and
the design of new catalysts for the efficient conversion of biomass-derived intermediates into biofuels.

• To provide a framework for a community-wide effort to develop a next-generation molecular modeling
package that supports a broad range of chemistry research on computing systems ranging from terascale
workstations and petascale servers to exascale computers.

NWChemEx is based on NWChem, an application supported by the DOE SC Biological and Environmental
Research (BER) program office, which is an open-source computational chemistry program that is being
actively developed by an international consortium of scientists. NWChem is a high-performance parallel
code that provides a broad range of capabilities for modeling molecular systems. The NWChemEx project
is re-designing and re-implementing NWChem for pre-exascale and exascale computers. NWChemEx will
develop high-performance, scalable implementations of two major physical models:

• Hartree-Fock and Density Functional Theory Methods. Hartree-Fock and density functional theory
(DFT) methods are the foundations for the physical models to be incorporated in the NWChemEx
framework. The implementation of these methods must be significantly revised to simulate the large
molecular systems in the targeted science challenges on exascale computers.

• Coupled Cluster Methods. A robust suite of canonical, domain local, and explicitly correlated (F12/R12)
coupled cluster (CC) methods will be implemented in NWChemEx. These methods are the “gold”
standard in electronic structure theory and provide the level of fidelity required to address the above
targeted science challenges. Although the canonical CC implementation is far more computationally
intensive than domain local and explicitly correlated implementations, canonical CC methods are
required to validate the approximate localized and reduced scaling CC methods.
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In addition to the above, the NWChemEx project is developing density functional embedding theory
(DFET) in order to describe an active site and its environment. Embedding techniques provide a natural
and mathematically sound basis for seamlessly integrating subsystems with different electronic structure
representations, enabling the active site of interest to be described with high accuracy CC methods, while
using a lower fidelity method such as DFT to describe the impact of the environment on the molecular
processes in the active site. Finally, a number of auxiliary computational methods are being implemented
that will be needed to address the science challenges.

Although the NWChemEx project is driven by the two targeted science challenges, there are many other
science challenges within the mission of the DOE that can be addressed using this and future versions of
NWChemEx, including the development of new materials for solar energy conversion and next generation
batteries, simulation of chemical processes in combustion, predicting the transport and sequestration of energy
by-products in the environment, development of a science of synthesis, design of new functional materials,
and design of separation ligands for critical materials needs.

3.2.1 NWChemEx: Science Challenge Problem Description

To guide the development of NWChemEx, the project is focusing on two interrelated target science problems
(one base and one stretch) that are critical for the development of advanced biofuels: (1) the optimization
of feedstocks for the efficient production of biomass for biofuels and other bioproducts on marginal lands
and (2) the development of new catalysts for the efficient conversion of biomass-derived intermediates into
biofuels and other bioproducts. The development of advanced biofuels is driven by both energy security and
climate change considerations. A major goal of DOE’s advanced biofuels program is to develop fuels that can
use the existing infrastructure and replace existing fuels on a gallon-for-gallon basis. However, producing
high-quality biofuels in a sustainable and economically competitive way is technically challenging, especially
in a changing global climate. The NWChemEx project directly addresses one of the Priority Goals in DOE’s
2014-2018 Strategic Plan, namely, developing high-performance computational “models demonstrating that
biomass can be a viable, sustainable feedstock” for the production of biofuels and other bioproducts.

Accurate quantum chemical simulation of the molecules and molecular processes that arise in the
development of advanced biofuels is not feasible using current computational chemistry packages and existing
computer systems. The molecular systems are complex and involve hundreds to tens of thousands of atoms
in an active site that is embedded in an environment that may contain hundreds of thousands of atoms.
In addition, the active sites themselves have a large and non trivial configuration space—variations in the
spatial arrangement of the atoms that affect the reaction pathways, activation energies, and rates. The
relationships between the structure and composition of the active sites on the one hand and reaction pathways
and energetics on the other are poorly understood and lack predictive power. The two science challenges are
briefly described below, and problem details are listed in Table 13.

Proton Controlled Membrane Transport in Biomass Cellular Materials (Base).

The first focal point for the NWChemEx project is transport across cellular membranes in response
to biotic and abiotic stresses of importance to BER. Membrane transporters form gates between cells and
the environment for the flow of metal ions as well as carbon, nitrogen, nutrients, and metabolic products
and are key modulators of stress. An example is the Bax inhibitor that controls the transport of Ca2+

in transgenic sugarcanes. The process driving trans-membrane transport in the Bax inhibitor is poorly
understood, although from experimental studies the mechanism appears to be proton controlled and involves
two active sites, with one of those sites undergoing large conformational changes on protonation. It is critical
to have a detailed molecular understanding of transport processes involved in stress responses to develop
genetic modifications that lead to better stress-resistant crops.

Describing proton-controlled ion (Ca2+) transfer in the Bax inhibitor in its local cellular environment
requires modeling of hundreds of thousands of atoms to describe a suitable portion of the cellular membrane,
the 3500 atom Bax inhibitor-1 protein, as well as a sufficient region of the immediate cytoplasmic environment.
Currently proton-controlled transport simulations can only be performed using standard force fields that lack
a description of the proton transfer process. Truly predictive modeling of this molecular system requires use
of high-level quantum mechanical methods, describing ∼103–104 atoms with CC methods embedded in an
environment of ∼105 atoms described by DFT to parameterize the proton hopping processes with chemical
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Table 13: NWChemEx challenge problem details.

Functional requirement Minimum criteria

Structure and energetics of
molecules

Solution of the electronic Schrödinger equation to predict the structures
and energetics of the reactants, products, and transition states involved
in the conversion of propanol to propene.

Numerical approach,
algorithms

Hartree-Fock, Density Functional Theory, and Coupled Cluster theory
(both canonical and reduced scaling versions). Coupled Cluster theory is
required to achieve an accuracy of 1 kcal/mol or better in the prediction
of the energetics of molecular interactions, including barriers to chemical
reactions.

Simulation details: problem
size, complexity, geometry, etc.

There are two targeted science challenges:
• Base: run calculations on fragments of the ubiquitin molecule,

which is typical of proteins like the Bax inhibitor. The fragments
begin with DGLRT, the 79-atom system used to benchmark
NWChem, and end in ubiquitin (to be run on Frontier and
Aurora). The calculation on Ubiquitin is representative of
Science Challenge #1 and define the final KPP-1 and FOM.

• Stretch: run calculations on the molecular system involved in the
dehydration of propanol by H-ZSM-5 zeolite. The unit cell of the
H-ZSM-5 zeolite is Si96O192, and the team will run calculations
to predict the binding energy of water and propanol and their
reactions in the zeolite cavity. These calculations are
representative of Science Challenge #2 and will define the
science stretch goals.

Demonstration calculation
requirements

Iterative solution of the coupled cluster single and doubles (CCSD)
equations followed by the calculation of the perturbative triples (T)
correction. The latter is the most numerically intensive, time-consuming
part of the CCSD(T) calculation and has a well-defined dependence on
the computational details (number of electrons, number of occupied
orbitals, number of virtual orbitals, etc.). Both the CCSD and (T)
correction will be used to define the FOM.

Resource requirements to run
demonstration calculation

The computing resources needed to run the demonstration base FOM
calculation amount to the whole exascale machine for 2 hours. The
calculation requires an aggregate memory amount of about 10 TB of
data for the reduced scaling coupled cluster perturbative triples (T)
calculation.
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accuracy for subsequent use in, for example, simulation of proton dynamics using adaptive force fields and
molecular dynamics and long-time conformational sampling at timescales of milliseconds of protonated and
de-protonated states.

Catalytic Conversion of Biomass to Biofuels and Other Bioproducts (Stretch).

The second focal point for this project is the prediction of specific, selective, and low-temperature catalytic
conversion of biomass to fuels and other products within complex interfaces of importance to DOE SC Basic
Energy Sciences (BES) program office. Zeolites, such as H-ZSM-5, offer great promise for the catalytic
conversion of renewable biomass-derived alcohols into fuels and chemicals. Compared to metal oxides with
diverse surface and acid properties, zeolites have relatively well-defined and uniform Brønsted acid site
structures, which makes them amenable to rigorous kinetic and theoretical investigations of the effect of acid
strength and solvation environment and confinement on the reaction free energies. Although there have been
a number of prior atomic-scale computational studies of these systems, unraveling the true complexity of the
conversion process and identifying means of achieving conversions at lower temperatures and pressures is an
unsolved problem. Nonetheless, there exists a body of experimental data for multiple chemical transformations
of systems like propanol dehydration on which to benchmark new theoretical approaches and computational
models.

The NWChemEx project will develop the capabilities needed to accurately model propanol dehydration.
This requires (1) modeling the unit cell of the H-ZSM-5 zeolite along with propanol, water, and other species
involved in the dehydration process, which will involve ∼102–103 atoms, with CC theory, (2) embedding the
unit cell in the larger zeolite environment using embedding techniques based on the DFT method, which will
involve 104–105 atoms, (3) computing barrier heights and reaction energies to chemical accuracy (1 kcal/mol)
with well-defined error bars for both the enthalpic and entropic terms, which can only be achieved with
accurate CC methods and embedding methodologies, (4) inclusion of thermal effects on the reactants, products
and transition state, and (5) predicting reliable chemical rate data for the reactions involved in the reaction
network.

3.2.2 NWChemEx: KPP Stretch Goal

By the end of the Exascale Computing Project two exascale computing systems are expected to be available
(Frontier at ORNL, Aurora at ANL) as well as a more complete set of computational chemistry capabilities.
This will enable us to address far more complex molecular systems. Specifically, the team plans to model the
conversion of 1-propanol to propene in the zeolite H-ZSM-5 as the exascale scientific stretch goal. Zeolites
offer great promise for the catalytic conversion of renewable biomass-derived alcohols into fuels and other
chemicals. Zeolites have relatively well-defined and uniform Brønsted acid site structures, the sites responsible
for the conversion of alcohols to hydrocarbons, which makes them amenable to rigorous kinetic and theoretical
investigations. In spite of a number of prior atomic-scale computational studies of these systems, unraveling
the steps in the conversion process as well as the enthalpies, entropies and rates of each of these steps is still
an unsolved problem.

The capabilities in NWChemEx will be used to rigorously characterize the steps proposed by Zhi, Shi,
Mu, Liu, Mei, Camaioni, and Lercher [4] for the conversion of propanol to propene as the stretch exascale
target science problem. One or more unit cells of the zeolite will be modeled along with propanol and other
species involved in the dehydration process, e.g., water. This will involve calculations on an active site with
O(102–103) atoms using the high accuracy coupled cluster CCSD(T) method embedded in a DFT description
of the larger zeolite environment of O(104–105) atoms. In addition, this will involve the potential energy
surface sampling methods to obtain enthalpies, entropies and rates. To be specific:

• Calculate the structures and energetics of the reactants, products, and intermediates involved in the
conversion of 1-propanol to propene.

• Calculate the structures and barrier heights of the transition states involved in the dehydration of
propanol.

• Calculate the rates of the reactions involved in the reaction network for the conversion of 1-propanol to
propene.
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3.2.3 NWChemEx: Figure of Merit

For the FOM of the NWChemEx project, a minimum size of the ubiquitin molecule using an aug-cc-pVTZ
basis was selected for assessing the performance of NWChemEx with ORNL’s Frontier computer system as
the primary target. Ubiquitin is a protein molecule similar to molecules like the Bax inhibitor involved in
the first science challenge, and there is an abundance of experimental data on ubiquitin and its fragments.
Although it will be possible to run localized CC calculations on ubiquitin, a 1231-atom molecule, it will not
be feasible to run canonical CC calculations on this molecule. Since one of the goals of the NWChemEx
project is to validate the localized (DLPNO) implementations of the CC method to show accuracy within
1 kcal/mol, a sequence of ubiquitin fragments was generated starting with DGRTL, which has 79 atoms and
is the largest molecule that can be modeled by NWChem on Titan, and ending with ubiquitin. This sequence
of molecules is described in the report for Milestone 9.1 “Establishment of the Performance Baseline for
NWChem” in Jira (ADSE11-166). This sequence will be used to assess the performance and scalability (with
respect to molecular size) of the Hartree-Fock (HF), DFT, CCSD, and (T) methods being implemented in
NWChemEx.

The protocol for calculating the FOM and KPP are as follows:

• To define a baseline, we performed an NWChem canonical coupled cluster calculations, CCSD(T), on
as much of Titan as possible. These were completed right as Titan was being decommissioned and were
run on as much of Titan as possible before the the machine was taken down. These simulations used
DGRTL as the molecular system and, therefore, there are some challenges to make an estimate of the
cost for a larger system like ubiquitin—especially for the CCSD part of the computation.

• Compute intermediate KPP values as we work on the applications utilizing Summit. Simulations of
the canonical coupled cluster methods on DGRTL and on larger fragments will be run on Summit to
obtain information about scaling for these systems. This scaling information is used to extrapolate
the cost of running a canonical CCSD(T) calculation on the ubiquitin (or larger) system for the whole
Summit computer. This provides an FOM for the NWChem code.

• Compute a Final KPP value using the Canonical CCSD(T) method. Perform an NWChemEx canonical
coupled cluster calculation, CCSD(T), on the largest molecule that is feasible using 100 % (or as much
of the system as is available) of the exascale computer in approximately two hours. Combined with
scaling data for smaller molecular systems, an estimate will be made for running the NWChemEx
CCSD(T) calculation on the ubiquitin (or larger) system to obtain a FOM for NWChemEx. The ratio
of the FOM for NWChemEx divided by the FOM for NWChem will be used to define the Base KPP
for NWChemEx. The Base KPP will largely represent the advances made in redesigning NWChemEx
for exascale computers.

• Compute a Final “enhanced” KPP value using the DLPNO CCSD(T) method. A DLPNO-based
NWChemEx CCSD(T) calculation will be run on the target molecule—currently, a minimum size of
ubiquitin—on as much of the target machine as possible and will provide the FOM for NWChemEx.
The ratio of the FOM for NWChemEx divided by the FOM for NWChem will define an enhancement
factor that quantifies the impact of the algorithmic improvements made in NWChemEx—yielding an
Enhanced KPP.

The ECP will be provided with both sets of numbers—the first as the Base KPP and the second as the
Enhanced KPP, with the Enhanced KPP being the value that will be used for the NWChemEx ECP KPP.

As noted above, ubiquitin is far too large for canonical CCSD(T) calculations with NWChem on Titan
(and even canonical NWChemEx on Summit), therefore the use of smaller fragments of this protein was
investigated. The smallest of these fragments, DGRTL, is sufficiently small to run with current technology
but large enough to provide timings that offer meaningful insights about the performance of NWChem. This
protein has 79 atoms and is near the limit of what is computationally tractable at the present time. Further,
this molecule has a H/(C+N+O) atom ratio, 1.05, which is close to that of ubiquitin, 1.03. The similarity
of this ratio is critical for defining comparable calculations on the small (DGRTL) and large (ubiquitin)
molecules. Assessments can be made about NWChem’s behavior on a molecular system like ubiquitin using
the data from calculations on DGRTL as shown below. As shown in Table 14, the DGRTL molecule is a
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Table 14: Comparison of the computational parameters and estimates of the
volume of computation for the molecular systems of interest for benchmarking
NWChem (DGRTL) and NWChemEx (ubiquitin).

Molecular parameters DGRTL ubiquitin Ratio (= ubiquitin
DGRTL )

Natom 79 1231 15.58
Hatom/ (Catom+Natom+Oatom) 1.05 1.03 0.98
Nelectrom 292 4592 15.73
Nmo 424 6680 15.75
Nocc 146 2296 15.73
Nvirt 278 4384 15.77
KPP× t×

(
N3

occN
4
virt

)
1.9× 1016 4.5× 1024 2.4× 108

successful mimic of ubiquitin—the ratios for the various parameters involved in CCSD(T) calculations on the
two molecules are confined to the range of 15.58–15.77—meaning that the ratios are consistent enough to
provide predictive power.

FOM Update

The current KPP value of 78.8 is based on a simplified molecular system (DGRTL), a smaller basis set
(cc-pVDZ as opposed to aug-cc-pVDZ), use of only the canonical CCSD(T), and use of Titan for NWChem
and Summit for NWChemEx. As discussed previously, the extrapolations for the full usage of the machine
is difficult. For NWChem, we have assumed linear scaling for the (T) portion (the best case scenario) and
polynomial for NWChemEx (based on actual computation). The CCSD portion of the calculation uses the
same polynomial scaling for both codes; however, this will be improved on using actually scaling information
of NWChemEx on Summit.

3.2.4 NWChemEx: Progress on Early and Pre-Exascale Hardware

Since the NWChemEx software was built from the ground up, there is still an extensive amount of software
that needs to be implemented—including the DLPNO CCSD(T) methods. However, significant parts of the
software, such as the canonical CCSD and DFT methods have been implemented. The project team has
made extensive in-roads to obtaining and improving performance across all platforms.

The general approach of the team for portability and scalability is to use separation of concerns and
abstract programming interfaces to isolate performance critical portions of the code. Underneath these
interfaces, the main programming model has been to use CUDA as the primary programming model and to
convert these modules into HIP or SYCL using the appropriate tools. Of course, some hand tuning for each
architecture will be required in this approach. However, our experience to date is that we can obtain very
good performance in this manner.

A rough sketch of the architecture pieces in the following discussion is given in Fig. 1. TAMM, Tensor
Algebra for Many-body Methods, is the tensor framework for the canonical and DLPNO CCSD(T) software.
In addition to its own kernels, it uses TAL-SH for tensor operations on a single node which in turn uses a
tensor transpose code, cuTT for CUDA and hipTT for HIP.

Performance on Summit

On Summit, significant improvements have been made to both the single node performance and scalability
of the canonical CCSD(T) and on a memory reduced CCSD(T) using a Cholesky decomposition. Profiling on
a single node (using both CPUs and GPUs) revealed data locality improvements and barrier-minimization
opportunities that were implemented. In addition, improvements were made in multilevel parallelization
process group issues. xGA was also improved for handling of irregular tiled arrays, performance of non-
blocking operations, and to replace low performing MPI operations with higher performing ones. These
improvements resulted in a significant improvement in single node performance. For example, comparing
against the use of all of the CPUs on one node of Summit with NWChem to the use of all of the GPUs on a
Summit node with NWChemEx, we see up to 2.2 times speedup on DGRTL using a small basis set. Last
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Figure 1: Rough sketch of the relevant NWChemEx architectural components.

Figure 2: Time in minutes for DGRTL with various basis sets.

year, this same performance was a 50 % speedup.
Improvements in the CCSD algorithm are shown in Fig. 2. The figure shows the time in minutes for

NWChem run on Titan in dark blue, for NWChem on Summit in red, and for NWChemEx on Summit in light
blue. NWChem does not have a GPU implementation for CCSD and thus the improvements are significant.
The simulations were run on 1/46 of Summit for the 6-31G basis, 1/21 of Summit for the cc-pVDZ basis, and
1/18 of Summit for the aug-cc-vPDZ basis. The NWChem Titan time for the latter basis set is an estimated
number. These timings have been analyzed in more detail and a significant amount of the lost performance
for NWChemEx is in the load imbalance which is currently being improved.

For the (T) portion of the code, comparing the NWChem performance on Summit (using GPUs) to the
NWChemEx performance results in speedups ranging from 6 times for the DGRTL molecule in a 6-31G basis
to 23 times with a cc-pVDZ basis. (Remember that the KPP is calculated based on the Titan numbers.)
The (T) portion of the calculation benefits from the improvements discussed above, but also on specific
optimization fusions across all contractions and balancing of operational intensity across the nodes. These
improvements are discussed in more detail in an accepted SC20 paper. Additional improvements for the
coming year will include using optimized block-level primitives, use of SUMMA-based methods to determine
the best tile shape and processor grids on a particular architecture, and to further optimize the overlap of
computation and communication.

The DLPNO CCSD code has been implemented and optimization is in progress—using code generation
optimization where possible. Precision problems have been identified with the sparse index spaces and
debugging is ongoing. Tensor intermediates are also being analyzed for reduced memory footprints or to use
additional intermediate tensors to reduce operation cost. The DLPNO (T) code has been implemented and is
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Figure 3: Summit roofline plot for key kernels on NVIDIA V100.

undergoing extensive verification and testing.
The Gaussian based DFT will be used as part of the stretch KPP and, thus, the project has worked to

ensure that this code performs and scales well. One of the most expensive components of the DFT code is
the numerical integration of the exchange-correlation (XC) potential. While embarrassingly parallel, the
algorithms are prone to load imbalance. In keeping with our design and implementation philosophy of
separation of concerns, the project has launched a general XC evaluation library, ExchCXX, for use on GPUs.
A batched kernel design is used to mitigate kernel launch overhead due to the relatively small task sizes. In
this approach logically identical tasks are merged into a single kernel with independent tasks executing on
different thread blocks. Batched BLAS are accomplished using the MAGMA library. Figure 3 shows that
most of the user defined kernels are bandwidth bound and that the variable sized batched (VB) BLAS are
compute bound.

The XC evaluation of NWChemEx shows 5–10 times the speedup of the NWChem XC evaluation on
Summit depending on the size of the system. Future work will look to improve the load balance and the
performance of distributed reductions using tools from the Pagoda project.

Next Steps

A significant portion of the work in the coming year is to finish the DLPNO implementations and to
improve their performance on Summit and early hardware. The framework of NWChemEx will go through a
hardening phase and ensure that memoization, I/O, and restart work well. New functionality will include
gradients for the Hartree-Fock and DFT portions of the code and the development of explicitly correlated
F12 energies in the DLPNO formalism. Future activities will also include integration with the BES SPEC
project and the ECP EXAALT project—specifically with LAMMPS.
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3.3 GAMESS

Heterogeneous catalysis and the design of new catalysts is a grand challenge problem that will require
the availability of exascale computers. To take full advantage of exascale architectures, it is critical that
application software be developed that can exploit multiple layers of parallelism and take advantage of
emerging low-power architectures that dramatically lower the energy/power cost without the significant
deterioration of time to solution. This work will develop ab initio methods in the electronic structure program
GAMESS, based on fragmentation methods that have been shown to scale beyond the petascale combined
with high-quality quantum chemistry methods. To attain exascale performance, GAMESS is being refactored
to take advantage of modern computer hardware and software, and the capabilities of the C++ libcchem
code that is co-developed with GAMESS is being greatly expanded. Concurrently, performance analyses is
being performed for the broad array of electronic structure methods in GAMESS on current and emerging
architectures to assess their ability to decrease time to solution while decreasing energy demands. The new
codes and algorithms that are being developed will be achieved on the heterogeneous catalysis problem,
specifically by using mesoporous silica nanoparticles (MSN), requiring thousands of atoms as a template.

MSNs are highly effective and selective heterogeneous catalysts for a wide variety of important reactions,
including carbinoalamine, which is a starter material for other structures. MSN selectivity is provided by
“gatekeeper” groups that allow only desired reactants to enter the pore, keeping undesirable species from
entering the pore. The presence of a solvent further complicates the problem. Accurate electronic structure
calculations are needed to deduce the reaction mechanisms, including the effects of various solvents, and to
subsequently design even more effective catalysts. The narrow pores (2–4 nm) can create a diffusion problem
that can prevent product molecules from exiting the pore. Hence, in addition to elucidating the reaction
mechanism, it is important to study the dynamics of the reaction process in which a sufficiently realistic
cross section of the pore is included. It has been common to approximate a system such as this with a small
model so that the small model might provide insight into the actual system. However, a recent computational
study of MSN catalysis of carbinolamine formation demonstrated that small “toy” models are inadequate
qualitatively and quantitatively.

3.3.1 GAMESS: Science Challenge Problem Description

The team will compute the chemical energetics on a model reaction with a representative MSN. An adequate
representation of the MSN pore requires thousands of atoms, including solvent, with an appropriate basis set.
For example, 5000 heavy atoms with the aug-cc-pVTZ basis set require more than 500,000 basis functions, not
including the hydrogen atoms, the reacting molecules, and (especially) the solvent molecules. The challenge
problem specifications are listed in Table 15.

The energy surface will be mapped via GAMESS calculations by using the EFMO + RI-MP2 methodology
with refined calculation by using the EFMO+CR-CC(2,3) coupled cluster approach or GAMESS EFMO +
QMCPACK QMC approach (as stretch goals) for more accurate reaction rates.

3.3.2 GAMESS: KPP Stretch Goal

The base goal will be a system that comprises 1738 atoms plus solvent, giving an estimated total of 25,000
atoms. The stretch goal will be an expanded system with ∼76,000 atoms, including solvent. The stretch goal
will allow a more realistic treatment of the diffusion problem. The baseline and stretch goals will include
20–40 points (energy + gradient) on the potential energy surface.

Additionally, the base goal will treat all chemistry in the system at the RI-MP2 level, whereas the stretch
goal will apply CC and QMC to activation areas and nearby dimer fragments.

3.3.3 GAMESS: Capability Plan

FY19: Demonstrate the MSN problem with 1738 atoms and the following characteristics:

• (E)FMO + RI-MP2 Energies and

• tens of nodes on the CPU system.
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(a) MSN model for the GAMESS base challenge problem (20�A) and stretch challenge problem (140�A)

Table 15: GAMESS challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

MSN Fragment energetics (reaction rates) and dynamics (diffusion rates)
computations with at least 10,000 atoms for the pore + solvent. The
go-to level of theory will be EFMO/RI-MP2 with an adequate basis set
(e.g., 6-31G(d,p)) for the pore + catalyst + gatekeeper. The solvent will
be treated with the same level of theory or with EFP. Final energies will
be captured by using multilevel EFMO calculations with CC or QMC
calculations for the reaction region and RI-MP2 elsewhere.

Numerical approach,
algorithms

Configurations can be computed concurrently; each configuration will
use the EFMO fragmentation approach to spatially parallelize the
calculation of underlying quantum-chemistry methods, which are
typically characterized by dense linear algebra-like operations:
Hartree-Fock → RI-MP2 → CC/QMC.

Simulation details: problem
size, complexity, geometry, and
so on.

At least 10,000 atoms, comprising the MSN pore, reactants, and
solvents. An estimated 1 million basis functions.

Demonstration calculation
requirements

Demonstrate the ability to complete the science challenge problem by
concurrently running a subset (1–10) of atomic configurations
concurrently with EFMO-RI-MP2 on the full exascale system.

Resource requirements to run
demonstration calculation

Full exascale machine for 2–4 h for each energy + gradient RI-MP2
calculation.
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FY20: Demonstrate the MSN problem with 1738 atoms plus 6000 solvent atoms with the following charac-
teristics:

• (E)FMO + RI-MP2 energies and gradients,

• RIMP2 accelerated with GPU,

• hundreds of GPU-accelerated Summit nodes,

• developed ability to use general Fock build from LibCChem, and

• RIMP2 mini-app compiled and working on Iris.

FY21: Demonstrate the MSN problem with 1738 atoms plus 12,000 solvent atoms with the following
characteristics:

• EFMO I/O bottleneck reduced to less than 10–20 % of the runtime,

• developed general fragmentation method in FragLib (that subsumes current FMO and EFMO)
codes,

• fully optimized general Fock build from LibCChem with open shell capability and analytic gradients,

• fully optimized one- and two- electron integral routines from newly developed LibAccInt in
GAMESS and LibCChem, and

• fully analytic gradients with EFMO applicable to MSN.

FY22: Demonstrate the MSN problem with 1738 atoms plus 12,000 solvent atoms with the following
characteristics:

• GPU-optimized RI CC code for the reaction center (∼20 atoms) with the remaining atoms treated
with RI-MP2 and

• multilevel fragmentation for ∼30 points on the potential energy surface.

An initial RI-CCSD method was completed in FY20 Q4. RI-CCSD(T) is anticipated at the end of
FY21 Q2, and RI-CR-CC(2,3) is anticipated at the end of FY21 Q4.

FY22 Complete challenge problem.

3.3.4 GAMESS: Progress on Early and Pre-Exascale Hardware

Performance on Summit

The GAMESS RI-MP2 code was off-loaded onto GPUs, and benchmarks were run on Summit. The
results of these tests are shown in Table 16. The speedup improves as the size of the problem increases. The
strong scaling of FMO/RI-MPI2 for the MSN system with 1738 atoms (32 fragments) on Summit is shown in
Fig. 5a. With an added 2000 solvent water molecules, the EFMO/RI-MP2 strong scaling is shown in Fig. 5b.
In both cases, FMO/EFMO is run on the CPU, and RI-MP2 is run on the GPU.

The GPU speedup of the GAMESS RI-MP2 code on Summit when using the GPUs vs. just CPUs is
17.2× for the largest basis set calculation on a representative molecule.

For the standalone HF code based on the general Fock build, the team has achieved nearly perfect
parallelism for more than 20,000 atoms by using 95 % of Summit. A roofline performance analysis shows the
code performing near the non-FMA floating-point operation peak on V100. The strong scaling for the HF
code is illustrated in Fig. 6.

Next Steps

For Tulip, the team will investigate the use of existing rocblas routines to build an eigensolver. The
team will modify the build system to accommodate building for NVIDIA and AMD. the team will also run
multinode tests.

For Iris, the team will port the full HF stand-alone code to DPC++ and OpenMP off-load. The team will
test the GAMESS branch with OpenMP off-load. The team will perform a roofline analysis on the RI-MP2
mini-app once the Intel Advisor works with MKL.
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Table 16: Speedups of benchmark problems on Summit. CPU results are run
on two Power9 cores, and GPU results are attained by using all six V100 GPUs.
Wallclock times are in seconds.

Wall clock time

Basis set N basis CPU GPU Speedup

STO-3G 461 15.6 4.5 3.1
3-21G 779 74.9 9.1 8.2
3-21G(d) 887 106.9 11.1 9.6
6-31G 779 76.3 9.0 8.5
6-31G(d) 1205 232.6 17.2 13.5
6-311G 1169 248.2 19.4 12.8
6-311G(d) 1595 490.6 30.0 16.4
6-311G(d,p) 1697 574.6 33.4 17.2

(a) FMO/RI-MP2. (b) EFMO/RI-MP2.

Figure 5: Strong scaling on Summit for the MSN system.
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Figure 6: Strong scaling of the standalone HF code.

3.4 EXAALT

MD is a cornerstone of computational sciences. However, over and over, MD is prevented from achieving
complete scientific success by the inability to simultaneously reach the necessary length and time scales while
maintaining sufficient accuracy. Although the raw computing power available at the exascale should allow
for a dramatic extension of the range of applicability of MD, conventional massively parallel codes suffer
from poor strong scalability. This implies that a simple scale-up of current practices would only enable
the simulation of much larger systems (billions or trillions of atoms) but would do little to improve current
timescales (nanoseconds) and accuracy (empirical potentials). Because most challenging problems instead
require accessing different regions in the accuracy (A), length (L), and time (T) simulation space (ALT), one
of the team’s key tools, MD, is in danger of missing out on the exascale revolution.

The EXAALT project combines three state-of-the-art codes—LAMMPS, LATTE, and ParSplice—into a
unified tool that will leverage exascale platforms efficiently across all three dimensions of the ALT space. The
new integrated capability will comprise three software layers. First, a task management layer will enable
the creation of MD tasks, their management through task queues, and the storage of results in distributed
databases. It will be used to implement various replica-based accelerated MD techniques, as well as to enable
other complex MD workflows. The second layer is a powerful MD engine based on the LAMMPS code. It
will offer a uniform interface through which the different physical models can be accessed. The third layer
provides a wide range of physical models. In addition to the many empirical potentials implemented in
LAMMPS, it will provide high-performance implementations of electronic structure-driven MD at the density
functional tight binding (DFTB) level, as well as to SNAP, a high-accuracy machine-learned potential.

The project involves two science challenge problems. The first challenge problem is related to nuclear
fission. Nuclear energy based on fission provides about 16% of the world’s electricity. However, only 4–6 % of
the uranium atoms in the primary fuel, UO2, are burned, leaving behind a vast energy resource and creating
a greater-than-necessary nuclear waste problem. One of the primary reasons is material integrity: as the
fuel burns, radiation damage and fission gases accumulate, causing fuel swelling, pellet-clad interactions, and
increased pressure on the clad. Because current burn-up levels are predicated on understanding how the fuel
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evolves, improved models of fission gas evolution offer the potential for extracting more energy from the
fuels. density functional theory—particularly DFT+U—has provided significant insight into the kinetics and
thermodynamics of the defects that dictate fission gas evolution. These methods allow the electrons and
holes that accompany defects to naturally distribute themselves. For instance, when an oxygen interstitial is
inserted into UO2, it creates two holes that reside on U ions, changing their oxidation state from U4+ to
U5+. Critically, DFT+U calculations have identified larger defect clusters that contain up to four uranium
vacancies as important for mass transport. However, DFT+U approaches are too computationally expensive
to fully characterize these defects. In contrast, empirical potentials are affordable but cannot account for
the charge redistribution, which is critical for correctly describing defect properties. For example, if holes
are inserted by hand with explicit U5+ species whose pairwise interactions are different than for U4+, then
the agreement with DFT + U calculations for static quantities is significantly improved. Unfortunately,
this approach is incompatible with studying dynamics because holes must be able to redistribute as the
geometry evolves. Furthermore, different defects dominate behavior, depending on experimental conditions
(e.g., temperature and burn-up). Success involves knowing how these defects diffuse as a function of size, gas
content, and temperature because this behavior forms the input to higher level fuel evolution models.

Solving this grand challenge will require a significant advance in the ability to perform high-accuracy,
electronic structure-driven MD simulations on the timescales that are needed to observe the diffusion of
defects while accounting for the changing polaron distribution. Given the size of these defects, relatively small
systems (<1000 atoms) are sufficient. However, given the high barriers for uranium-defect evolution (∼2.5 eV),
millisecond timescales will be required for the defects to move at the temperatures of interest (800–1300 K).
This regime is inaccessible on present platforms. Simulation rates of only 1 µs/d for electronic-structure-based
DFTB MD at the petascale are estimated. Therefore, the solution to this problem requires the development
of a new simulation capability for the exascale that can increase the timescales by 1000×. Developing
a computational capability to carry out this challenge problem at exascale is one of the stretch goals of
EXAALT.

The second challenge problem relates to nuclear fusion. Realizing the promise of fusion as a commercially
attractive twenty-first century energy source requires advanced structural materials capable of sustained
operation in an extreme environment with high temperatures and high fluxes of helium, hydrogen isotopes,
and neutrons. The performance demands on plasma-facing components (PFCs) of future fusion power
plants are beyond the capability of current materials. Tungsten will be the divertor material in ITER and
is the leading candidate material for DEMO and future fusion reactors. However, experiments indicate
the possibility of substantial surface modification in tungsten exposed to low-energy plasma that contains
helium. Experiments show that nanostructured fuzz, a nanoporous phase with tendrils on the order of tens
of nanometers in diameter, forms on the surface when the surface temperature is between 1000 and 2000 K
and the incident ion energies are between 20 and ∼100 eV. Such surface features will impact heat transfer
and fuel retention, increase the rates of erosion through sputtering and dust formation, and embrittle the
divertor. These modifications to the microstructure can lead to premature failure of the materials or quench
the fusion reaction by cooling and destabilizing the plasma. Given the critical importance of understanding
and controlling these microstructural changes, many possible formation mechanisms have been proposed.
However, given the current lack of direct evidence on the nature of the microscopic mechanisms postulated to
be responsible for fuzz growth, none of these models are widely accepted. However, some key facts are known.
Transmission electron microscopy suggests that the nanometer-scale tendrils of fuzz and subsurface regions of
tungsten contain gas bubbles and/or cavities, which suggests that bubble evolution is an important process
in fuzz formation in tungsten. Fuzz growth is observed to proceed with no apparent saturation in thickness.
This raises the question of how low-energy helium finds its way deep below tendril surfaces. Additional
questions arise beyond the obvious question of the fuzz formation mechanism: (1) what factors control the
temperature dependence of the helium accumulation and transition to fuzz formation, (2) how does low-energy
helium penetrate through a thick tungsten fuzz layer to reach the bulk, and (3) what mechanisms control the
continued growth of fuzz?

Although sophisticated efforts that leverage current leadership-class computing have enabled advances
in understanding, a direct and unambiguous solution to this problem remains out of the reach of current
capabilities. To identify the true origin of fuzz, simultaneous increases in time and length scales will be
required, a feat only possible at the exascale. Answering these questions is anticipated to require accessing
two regions of the ALT space: (1) 107 atoms over milliseconds with relatively inexpensive conventional
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potentials to identify the nature of the mechanisms of roughening and early-stage fuzz growth and (2) 105

atoms over milliseconds at higher accuracy and ∼100–1000× the computational cost per atom to investigate
the mechanisms that allow for helium transport along tendrils while accurately accounting for competing
kinetics (e.g., trapping, desorption, agglomeration, bubble nucleation). Current simulation capabilities falling
short of this target by a factor of 1000× largely explains why this crucial technological problem is still so
poorly understood. This second challenge problem is used to define the threshold goal of EXAALT, and
progress toward achieving the 50× threshold will be monitored through the KPP defined as follows.

3.4.1 EXAALT: Science Challenge Problem Description

Two exascale challenge problems are defined.

Fusion problem (base goal): The second target problem requires a dramatic extension of the reach of
large-size long-time MD simulations. The team aims to simulate the evolution of a tungsten first-wall
in conditions typical of fusion reactor operation. The primary target is to simulate a 105 atom system
with a quantum-trained SNAP potential. This second challenge problem is used to define the threshold
goal and hence a KPP that will quantify the team’s progress.

Fission problem (stretch goal): The first target problem requires a dramatic extension of the reach of
long-time, high-accuracy MD simulations to simulate the dynamics of defects in UO2 on long timescales
with quantum-accurate fidelity. The target is to simulate the evolution of fission gas clusters in 102

atom systems while accounting for the changing polaron distribution during the migration processes.
Building a computational capability to carry out this problem at scale is a stretch goal of EXAALT.
Therefore, no KPP is directly associated with this challenge problem.

Details are listed in Table 17.

3.4.2 EXAALT: KPP Stretch Goal

As discussed in the previous section, one key stretch goal of EXAALT is to develop a computational capability
to carry out the fission science challenge problem efficiently at the exascale. The proposed stretch goal is to
deploy a computational framework that can efficiently use the exascale machines on this problem. The team
will strive to achieve a 50× speedup relative to its baseline, which is 5.7× 1010 atom3 time steps/s, but the
measure of success will be the deployment of a high-quality computational framework. This will involve the
following.

1. Ensuring that the task management infrastructure is scalable: This challenge is shared with the base
KPP problem.

2. Efficiently using the hardware by having all of the critical kernels offloaded to accelerators and running
efficiently: This is significantly harder for LATTE than for an empirical model because many functions
contribute to the runtime in the former case. Furthermore, the relative cost of these different functions
varies with the system size. This means that a large number of functions must potentially be ported to
the accelerators to insure good performance over a range of system sizes.

3. Ensuring that the time-integration scheme is robust and stable enough to reach very long timescales:
This is significantly harder for problems that require solving a self-consistent problem at each iteration
than for conventional classical simulations. At each timestep, LATTE must equilibrate charges before
computing the forces acting on each atom. This process is usually robust but can occasionally fail to
converge, at which point it is not always clear how to proceed. The failure rate in serial is very low,
but in a ParSplice setting, the number of replicas can be very large (e.g., 10,000), which dramatically
amplifies the overall failure rate. Therefore, the team must develop extremely robust approaches that
can keep the failure rates to extremely low levels.

The second stretch goal encompasses both challenge problems. It consists of developing an infrastructure
to generate accurate physical models at scale. Indeed, if EXAALT achieves the aforementioned goals,
simulations themselves will be able to efficiently and routinely leverage exascale resources. In this case,
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Table 17: EXAALT challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Fusion problem: The first problem consists of investigating the
evolution of a tungsten surface under conditions relevant to exposure to
a fusion plasma using atomistic simulations. The main physics of
interest are the annealing mechanisms and characteristic timescales.
This problem will be modeled by using a SNAP representation of
tungsten. This will access the
intermediate-accuracy/long-time/intermediate-size regime.
Fission problem: The second problem pertains to the evolution of
defects in nuclear fuels. The simulation will be carried out by using a
tight-binding description of UO2 that contains an individual
oxygen/uranium vacancy complex. This will access the
high-accuracy/long-time/small-size regime.

Numerical approach,
algorithms

Parallel trajectory splicing—parallel MD

Simulation details: problem
size, complexity, geometry, and
so on.

Describe size/scale/properties of physical system
Fusion problem: The reference simulation consists of a sublattice
ParSplice simulation of a 105 atom system with a damaged tungsten
surface typical of plasma-exposed conditions. The simulation will be
carried out at T = 800 K, which is a fusion-relevant temperature, by
using a SNAP representation of tungsten. The baseline FOM
corresponds to a SNAP parameterization that uses 205 bispectrum
components, or 205 descriptors of local atomic environments. A greater
number of bispectrum components gives higher accuracy, and this
number of components is consistent with the high accuracy desired for
the final science challenge problem calculations. Improvements in the
SNAP form developed under this ECP subproject, such as the new
quadratic form or neural network extensions, might allow the team to
ultimately achieve this same accuracy with fewer bispectrum
components with reduced cost. Accuracy is quantified as the average
error in predicted forces relative to a large database of DFT calculations.
In the final benchmark calculation used for the Fusion FOM, either the
baseline SNAP form or an improved SNAP form with accuracy
equivalent to the one used for the baseline calculation will be used.
Fission problem: The target simulation consists of a ParSplice
simulation of a 96 atom UO2 system that contains an individual
oxygen/uranium vacancy complex at the DFTB + uranium level of
theory by using the LATTE back end. The stretch goal is to develop the
computational capability to carry out such a simulation at the exascale
by using a combination of ParSplice, LAMMPS, and LATTE.

Demonstration calculation
requirements

The team anticipates requiring only a few runs at scale to demonstrate
this capability. To obtain an accurate performance benchmark on the
order of 50,000 time steps on each replica (∼50 ps of simulation time)
are needed.

Resource requirements to run
demonstration calculation

The team anticipates requiring on the order of ∼10 h on the full exascale
machine to demonstrate both challenge problems.
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parameterizing the physical model that will be used to carry out the simulations will become the main
bottleneck. Obtaining these models is currently extremely time-consuming and labor-intensive because it
requires generating and curating large sets of training and testing configurations, performing expensive DFT
calculations on these configurations, performing the fitting procedure to obtain a model that achieves a
sufficiently small discrepancy between predicted and measured values, and validating the model. Most often,
this process must be repeated many times before a satisfactory result is obtained. This often involves human
intervention and manual data assimilation. In light of this challenge, the second stretch goal is to develop a
scalable infrastructure on which the whole aforementioned model parameterization workflow can be executed
at scale, dramatically reducing the time required to obtain high-fidelity physical models that can be used in
simulations. Finally, the team also aims to build an active learning framework in which the model will be
improved on the fly as the simulation proceeds. Again, this would rely on the team’s ability to execute a
model parameterization workflow on the fly concurrently with a conventional ParSplice simulation workflow.

3.4.3 EXAALT: Figure of Merit

The FOM definition for EXAALT fusion problems is

FOM =
NtNatoms

t
, (2)

where Nt is the number of time steps, and t is the wallclock time.
Two values of the FOM can be defined: the so-called “Raw MD” FOM and the “ParSplice” FOM. The first

measures the throughput of the MD simulation that consumes most of the computing cycles in a ParSplice
simulation, and the second measures the performance of an actual ParSplice simulation, which includes
additional overhead not measured by the Raw MD value. This overhead is typically is on the order of
10–20 % of the raw FOM. The reference FOM value obtained on Mira was a raw MD FOM, but we will
use the ParSplice FOM as the final measure of success because it is a better measure of actual application
performance.

FOM Update

The latest FOM update was obtained on Summit. The benchmark was a standard ParSplice simulation of
a tungsten system that contains 2000 atoms. This simulation did not use the sublattice variant of ParSplice
in contrast to the final challenge problem, which will be run on a significantly larger system. However, the
workload on each worker instance is actually in good correspondence with the final challenge problem, given
that the domain decomposition used by sublattice ParSplice results in systems of ∼2000 atoms being allocated
to the workers. Therefore, the workload is very similar to what is expected in the final challenge problem;
the main difference is that there is a more complex task-management logic on the master process. Otherwise,
the same kernels that act on data of the same size will consume essentially all the cycles.

The ParSplice simulations were carried out on 1000 nodes of Summit. Each worker process used one V100
GPU and one POWER9 core (6× per node). This experiment yielded an FOM of 288× over the Mira baseline
when extrapolated to the whole of Summit. A corresponding “raw MD” FOM measure, this time using a
heterogeneous set of worker processes (6× one V100 GPU and one POWER9 core plus 1× 36 POWER 9
cores) per node, yielded a 350× speedup over the Mira baseline. The difference between the two FOM values
is consistent with the expected overhead from ParSplice. This overhead does not scale with the number of
worker instances but remains constant.

Current experience on pre-exascale systems is extremely encouraging. Pending major changes in hardware
characteristics, these results indicate that our FOM target will likely be achieved on at least one exascale
system.

3.4.4 EXAALT: Progress on Early and Pre-Exascale Hardware

Performance on Summit

Through a very valuable collaboration with NERSC/NESAP (R. Gayatri and N. Mehta), ECP/CoPA
(S. Moore), NVIDIA (E. Weinberg), and HPE (S. Anderson), the SNAP kernels were highly optimized on
Summit. As shown in Fig. 7, the performance of the SNAP kernels has increased 22 times from the pre-ECP
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Figure 7: Evolution of the SNAP simulation rate over the last 2 years. Note
the 22× increase in performance relative to the pre-ECP baseline.

baseline, of which a factor of 3.7× was obtained during FY20. The speedup was achieved through a range of
optimizations, none of them dominating the overall performance increase. The most notable optimizations
were:

• repeatedly changing the memory data layout of an array between kernels via transpose operations;

• refactoring loop indices and data structures to use complex numbers and multidimensional arrays
instead of arrays of structs;

• refactoring some of the kernels to avoid thread atomics and use of global memory;

• judiciously using Kokkos hierarchical parallelism and GPU shared memory;

• fusing a few selected kernels, which helped eliminate intermediate data structures and reduced memory
use;

• adding a new memory data layout, which enforced perfect coalescing and load balancing in one of the
kernels;

• making data layouts of certain matrices symmetrical, which reduced memory overhead and the use of
thread atomics on GPUs; and

• precomputing certain parameters.

The overall throughput increase also contains contributions from a refactoring of deeply nested loops,
which resulted in a net decrease in the number of flops that are executed. A detailed summary of the
optimization process is available in a recently submitted article [5].

The SNAP kernels are now highly optimized. Although some fine-tuning could improve the performance,
the kernels are approaching the compute-bound limit, which suggests good performance on even more powerful
GPUs.
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Figure 8: Roofline analysis of the production SNAP version on V100 at the
DRAM level.

We also made significant progress toward our stretch goal on Summit. LATTE was refactored, leading to a
7.8× increase in performance on POWER9. The refactored version was also ported to the BML/PROGRESS
libraries developed by the CoPA project. The combined stack compiles and runs correctly on Summit.
However, GPU performance is low, which is likely due to the small sizes of the systems that were considered
(only 96 atoms). This workload is insufficient to saturate the GPUs, leading to no performance improvement
versus running on the POWER9. On larger systems, the CoPA team has observed up to 15× performance
increase on the V100 for a molecular system, which is suggestive that a similar speedup could be achieved if
our system was expanded. A careful scaling study of the performance on V100 will be carried out shortly.

Next Steps

We will begin optimizing the production version on MI60 and MI100 on Tulip. We will also update
TestSNAP with the production version to have a good measure of the performance of the fallback OpenMP
off-load solution that would be used if the Kokkos implementation on the final exascale machines is delayed.
The performance of TestSNAP will also be assessed on ATS.

Regarding our stretch goal, we will characterize the performance of LATTE on the test beds and address
the bottlenecks that will be identified. We will also characterize the performance of LATTE on systems
of various sizes to identify the optimal conditions in which to carry out the simulations as a compromise
between simulation rate and efficiency on GPUs.

Finally, the machine learning (ML) activities will continue to be a focus. The implementation of novel
techniques to generate diverse training data to train the ML-based models is ongoing. We are also optimizing
the architecture of the neural networks used as part of the extension of SNAP. Finally, in collaboration with
the NWChem team, we will integrate EXAALT and NWChem so that the generation of training data can be
executed at scale, which will considerably decrease the time needed to parameterize physical models for new
materials. This capability will enable us to take the first steps toward a powerful integrated simulation/ML
capability.

3.5 ExaAM

ExaAM, the exascale additive manufacturing (AM) project, is developing the Integrated Platform for Additive
Manufacturing Simulation (IPAMS), which is a collection of capabilities to simulate metal AM processes
at the fidelity of the microstructure. By directly incorporating microstructure evolution and the effects
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of microstructure within AM process simulation, ExaAM is enabling the design of AM components with
location-specific properties and the acceleration of performance certification.

AM is revolutionizing manufacturing, allowing for the construction of complex parts not readily fabricated
by traditional techniques. Additionally, AM offers the possibility of constructing “designer materials” by
adjusting process control variables to achieve spatially varying physical properties. additive manufacturing is
a unique application area due to its strategic importance to both US industry and federal agencies, such
as DOE, including NNSA, DOD, NASA. Although there has been significant interest and investment in
AM, the fraction of this investment devoted to modeling and simulation is relatively small and is focused
on developing reduced-order models for industry use rather than high-fidelity predictive models. ExaAM
represents a unique opportunity to leverage DOE investments to address challenges that require exascale
resources and, to the team’s knowledge, that are not being addressed by other AM modeling and simulation
efforts.

In AM, a geometric description of the part is processed into 2D slices. A feedstock material is melted,
and the part is built layer by layer. In metal AM, the feedstock is often in wire or powder form, and the
energy source is a laser or electron beam. ExaAM is focusing on powder bed processes in which each layer is
approximately 50 µm. Hence, a part that is 1 cm tall would require 200 layers, each consisting of spreading
new feedstock powder and one or more passes of the laser or electron beam to sinter and/or melt the powder
in appropriate locations.

A complex interplay between multiple physical phenomena at spatial and temporal scales that spans
orders of magnitude determines the performance of the final manufactured part. These include heat transfer
(e.g., conductive, convective, radiative, and evaporative), fluid flow, melting and solidification, and solid-solid
phase transformation. These phenomena are directly influenced by controllable process parameters, such
as the pattern by which each layer is melted, diameter, magnitude, speed of the energy source, and so
on. In turn, these influence the microstructure throughout the part, which determines local properties,
residual stress, and—ultimately—performance (e.g., strength, modal properties, service life). This sequence
is often referred to as the process-structure-property-performance (PSPP) relationship. There are significant
gaps in understanding the fully integrated sequence for AM processes; filling these gaps where possible and
quantifying uncertainties where it is not is crucial to unlocking the potential of AM.

The physical processes involved in AM are similar to those of welding—a field with a wealth of experimental,
modeling, simulation, and characterization research over the last decades. Unfortunately, although calibrated
and approaching predictive capability, the simulation tools developed for welding and other similar processes
are inadequate for AM processes as demonstrated by the inability to predict the failure rate for new AM
parts, which can be as high as 80%. The team believes that this is largely because the PSPP relationship is
traditionally analyzed in an uncoupled manner, relying on tabular databases unable to adequately capture
the implicit, dynamic, nonequilibrium nature of AM processes.

One ExaAM goal is to remove those limitations by coupling high-fidelity mesoscale simulations within
continuum process simulations to determine microstructure and properties by using local conditions. Typically,
thermomechanical finite element models are employed at the macroscopic part scale; finite volume or finite
element models for fluid dynamics and heat transfer to capture the melt pool dynamics and solidification at
millimeter scales; mesoscale approaches (e.g., discrete elements, cellular automata, kinetic MC, phase field
models) to simulate melting, solidification, and microstructure formation at the micron scale; and polycrystal
plasticity models to develop the microscale mechanical property relationships.

Although no single code can capture all the relevant physics required, several codes have been developed to
simulate phenomena similar to those required for AM within the DOE complex and the broader computational
science community. ExaAM is leveraging several of those existing capabilities, enhancing and extending them
as needed and developing new capabilities when necessary.

A full ExaAM simulation comprises five stages, as shown in Table 18.
For the purposes of estimating computational resources, the focus is on stages 1–3 since the cost of stages

0 and 4 is relatively small and can be performed on capacity HPC computational platforms. Additional
capabilities that are required as risk mitigation or to provide parameters for models above (e.g., subgrain
scale solidification microstructure evolution via phase field and OpenFOAM for melt pool simulation) are
also omitted from the remaining discussion.
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Table 18: Computational simulation stages in an ExaAM simulation.

Stage Exascale simulation Required computational
capability

ExaAM components

0 Approximate full-part
build simulation

Macroscale thermomechanics Diablo

1 Prediction of “as-built”
microstructure

Coupled thermomechanics, fluid flow,
and microstructure evolution

Diablo + TruchasPBF +
ExaCA

2 Prediction of “late-time”
microstructure

Solid-solid phase transformations and
other mesoscale phenomena during
cooling

MEUMAPPS-SS

3 Prediction of
micromechanical
properties

Response of the predicted
microstructure to representative forces
at a sufficient number of locations and
synthesis of macroscale constitutive
models from microscale properties

ExaConstit

4 Full-part build simulation Macroscale thermomechanics using
locally accurate constitutive properties

Diablo

3.5.1 ExaAM: Science Challenge Problem Description

ExaAM is developing a collection of simulation capabilities for performing process-aware performance modeling
of additively manufactured parts by using locally accurate properties predicted from microstructures that
develop based on local processing conditions. This capability will be demonstrated by simulating the Inconel
625 (IN625) build of the complex bridge structure developed for the 2018 National Institute of Standards and
Technology (NIST) AM-Bench Conference known as AMB2018-01 (Fig. 9). A full description can be found
on the NIST website.2

The threshold (i.e., base) simulation will be performed at the location at which measurements were
performed, 2.5 mm above the base plate, for one of the thick legs. Since the alloy selected is IN625, which
does not exhibit significant microstructure changes due to solid-solid phase transformation and precipitate
formation during the build process, Stage 2 can be neglected from the threshold problem. Stage 2 would be
required for other materials, such as IN718 or Haynes282, so stage 2 appears as a stretch science goal.

Tables 19 and 20 describe Stages 1 and 3 in detail for the threshold challenge problem. The following
caveats apply to the challenge problem.

• This estimate is for the threshold challenge problem only. The actual goal would be to predict microstruc-
ture and properties throughout AMB2018-01, which would require significantly more computational
resources.

• This estimate includes a significant amount of flexibility (e.g., number of layers in Stage 1, number
of representative volume elements (RVEs) in Stage 3), allowing adjustment based on accuracy needs,
better-than-expected performance, or lower-than- expected performance.

• Memory is not anticipated to be a limiting factor.

3.5.2 ExaAM: KPP Stretch Goal

The planned stretch science goals for ExaAM are defined in Table 21.

2https://www.nist.gov/ambench/amb2018-01-description
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Figure 9: NIST AM-Bench AMB2018-01 bridge structure used for the ExaAM
challenge problem. L1, L2, and L3 are thick, thin, and medium legs, respectively.
A section is a set of three legs along with the upper bridge structure.

Table 19: ExaAM challenge problem details for Stage 1, “As-Built Microstructure
Prediction.”

Functional requirement Minimum criteria

Physical phenomena and
associated models

Thermomechanics, fluid flow, heat transfer with phase change (melting
and solidification), microstructure evolution.

Numerical approach,
algorithms

Time-dependent Lagrangian FEM with nonlinear material models,
time-dependent Eulerian FVM, cellular automata.

Simulation details: problem
size, complexity, geometry, and
so on

For the purposes of this estimate, neglect the computational cost of the
far-field thermomechanical component To obtain thermal history profile,
each layer requires 250 domains of 1.0× 0.3× 0.2 mm with 5 µm zones
for 12.5 million time steps (0.5 µs time step size). Microstructure
evolution occurs on the same set of domains but at a 1 µm resolution
and a similar time step requirement.

Threshold simulation
requirements

A representative volume of AM microstructure requires coupled
thermomechanical/fluid flow and microstructure development simulation
of five layers.

Resource requirements to run
threshold calculation

Based on scoping simulations on Summit, the team estimates requiring
approximately 50 Summit nodes for 4 h. Execution on Frontier should
require < 1 h for a similar number of nodes.
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Table 20: ExaAM challenge problem details for Stage 3, “Micromechanical
Property Prediction.”

Functional requirement Minimum criteria

Physical phenomena and
associated models

Elastic-plastic response using polycrystal plasticity.

Numerical approach,
algorithms

Time-dependent Lagrangian FEM with nonlinear crystal plasticity
material models using grain conforming mesh.

Simulation details: problem
size, complexity, geometry, and
so on

Each RVE is a 100× 100× 100 µm domain that contains approximately
1000 grains at 1 µm resolution (1 million zones).

Threshold simulation
requirements

For each RVE, up to 1% strain along 20 loading conditions at 10
temperatures, or 200 simulations for each RVE.

Resource requirements to run
demonstration calculation

Approximately 10 locations (i.e., RVEs) will be required, resulting in
2000 independent ExaConstit simulations. Based on scoping simulations
on Summit, each simulation will require approximately 1 h on two
Summit nodes (4000 nodes for 1 h for all 2000 ExaConstit simulations).
Execution on Frontier should require 10–15 min on a similar number of
nodes.

Table 21: ExaAM science stretch goals.

Description Motivation Components

Predict microstructure
and local properties
throughout AMB2018-01

Process optimization requires knowledge of local
microstructure and properties throughout.

TruchasPBF,
ExaCA,
ExaConstit,
Diablo

Inform development of
reduced-order models for
AMprocess simulation

Topology and shape optimization require faster-running
models for process simulation.

TBD

Detailed solidification
simulation (IN625, IN718,
and/or Haynes282)

Subgrain microstructure and nucleation model to inform
grain-scale microstructure (ExaCA).

AMPE and/or
Tusas

In situ annealing (IN718
and/or Haynes282)

Capture microstructure changes in materials the exhibit
significant solid-solid phase transformations and
precipitation during a build (Stage 2 in the workflow).

MEUMAPPS-
SS

Heat treatment (IN625) Capture microstructure changes during post-build heat
treatment (hours) of AMB2018-01

MEUMAPPS-
SS.

Determine local crystal
model from annealed state
(IN625, IN718)

Capture changes in the local crystal model from
solid-sold phase transformations and precipitation during
cooldown and annealing.

ExaConstit

Powder-resolved process
simulation

Capture details of melt pool behavior to optimize
process parameters to minimize porosity due to
keyholing and so on.

ExaMP
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Table 22: ExaAM mileposts.

FY19: Demonstrate the ability to perform thermomechanics + melt pool and melt pool + mi-
crostructure simulations of overlapping melt pools for an arbitrary scan strategy.

FY20: Demonstrate the ability to predict microstructure and properties for at least one location of
AMB2018-01.

FY21: Demonstrate the ability to predict microstructure and properties at one location of thick leg
of AMB2018-01 and perform an initial part-scale build by using self-consistent properties.

FY22: Demonstrate the ability to predict microstructure and properties at multiple locations of
AMB2018-01 and perform a part-scale build by using self-consistent properties. Determine
the number of locations required for challenge problem.

FY23: Perform challenge problem simulations.

3.5.3 ExaAM: Capability Plan

A full ExaAM simulation comprises the five stages listed in Table 18. Completing the challenge problem
simulation requires developing the capabilities represented by these five stages and linking them in a sequential
workflow. The mileposts below represent a sequence of steps that demonstrate progress toward that ultimate
goal.

3.5.4 ExaAM: Progress on Early and Pre-Exascale Hardware

Performance on Summit

Although we anticipate the need to implement new physics as we continue to analyze validation experiments,
the basic physics required to simulate metal AM was implemented in each component code, and our FY20
capability milestone focused on the coupling or links between the components in our computational workflow.
Specifically, we determined the required information to be transferred and enabled each component to send
and receive this information on the ORNL Summit computer system.

The ExaAM FY20 demonstration milestone is intimately tied to our FY20 milepost, “Predict microstruc-
ture and properties for at least one location of AMB2018-01.” As described, the ExaAM computational
workflow and exascale utilization model are driven by the coupling between AM processing, material mi-
crostructure, material properties, and part performance (PSPP) with the goal of creating AM process-aware
material models. An initial AM process-aware material model and a built simulation that uses it is our
FY21 milepost. Each milepost demonstrates progression toward completing this workflow. In FY20, we
demonstrated “Process to Property” for at least one location in the AMB2018-01 build. Specifically, we:

• enabled the coupling of key elements of the ExaAM workflow from melt-pool scale process simulation
through the simulation of microstructure development to the calculation of location specific material
properties;

• iIdentified location (midway in thin leg) and scale (20 layers) for statistically significant simulations;

• simulated the melt and resolidification of 20 successive layers at one location of AMB2018-01 using the
thermal code TruchasPBF;

• transferred thermal histories to the microstructure development code ExaCA to compute the grain-scale
microstructure everywhere within the 20 layers; and

• carved out an RVE containing hundreds of crystalline grains and computed the location-specific material
properties using the code ExaConstit.

All these simulation were performed on Summit, and we found the detailed microstructure and property
components to be the most computationally intensive. A detailed analysis of the performance of these
components on Summit is presented as follows.
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(a) Strong and weak single-node, OpenMP and GPU scaling. (b) Strong and weak multinode, multi-GPU scaling.

Figure 10: Tusas performance on Summit.

Tusas (Stage 1)

Tusas is a general, flexible code for solving coupled systems of nonlinear partial differential equations.
Tusas was originally developed for phasefield simulation of solidification. The Tusas approach comprises an
unstructured Lagrange finite element spatial discretization of the fully coupled nonlinear system, which is
treated explicitly or implicitly (Euler, Trapezoid, BDF2, or IMR) in time with a preconditioned Jacobian-Free,
Newton-Krylov (JFNK) method. The preconditioning strategy in Tusas is based on block factorization and
an algebraic multigrid that allows an efficient, implicit time integration. The JFNK method only requires a
residual from an implementation standpoint, so Tusas allows a flexible framework because it only requires users
to implement code for a residual equation with the configuration of the nonlinear system and preconditioner
performed at runtime.

In addition to performing well in parallel across multiple CPUs via MPI and OpenMP, one of Tusas’
strengths [6, 7] is the ability to run efficiently across multiple GPUs via MPI and CUDA. Because the residual
fill is composed entirely of local operations, it is performed entirely on the GPU by using a distance-1 element
graph coloring within each MPI subdomain. Element graph coloring avoids shared memory race conditions
and atomic operations on CPU threads and GPUs. Additionally, inner products within the GMRES solver
are implemented on threads and each GPU via OpenMP and Cuda within the Belos and Kokkos packages in
Trilinos [8].

To demonstrate strong and weak parallel multinode and multi-GPU scaling, we considered simulations for
a 3D dilute binary alloy solidification with discretizations consisting of 17,073,666, 67,766,274, 270,011,394,
1,077,941,250, and 4,307,559,426 unknowns. The discretizations consist of meshes with 512× 128× 128,
512× 256× 256, 512× 512× 512, 512× 1024× 1024, and 512× 2048× 2048 bilinear hexahedral elements.

Figure 10a shows the CPU time required for time integration to a fixed time on a single node of Summit
as a function of the number of GPUs and number of OpenMP threads with 17,073,666 unknowns. Ideal
strong scaling is demonstrated for OpenMP threads with up to 168 threads, and for up to 6 GPUs. A factor
of approximately 6× is achieved by using 6 GPUs over 168 threads. Figure 10b shows the CPU time required
for time integration to a fixed time as a function of the number of GPUs across multiple nodes, using six
GPUs per node. Specifically, Fig. 10b shows strong and weak scaling on Summit on up to 24,576 GPUs (4096
nodes) with up to 4,307,559,426 unknowns. Strong scaling is depicted by solid lines on Fig. 10b where each
color depicts a fixed problem size. Weak scaling is depicted by horizontal markers with dashed lines. We
acknowledge that further optimizations can be performed on our GPU implementation. These preliminary
scaling studies demonstrate that Tusas effectively scales strongly and weakly on thousands of GPUs with
billions of unknowns and is particularly suited for emerging heterogeneous architectures.

MEUMAPPS-SS (Stage 2)
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The original version of MEUMAPPS-SS is written in Fortran 90 and uses a parallel fast Fourier transform
(FFT) package, P3DFFT [9], which allows MPI decomposition of the computational domain in two directions
(a “pencil decomposition”), which then enables the use of scalable 3D FFTs in which the 1D FFTs are
performed with the FFTW library [10]. The scaling of the Fortran 90 version of MEUMAPPS-SS on Summit
with and without GPU off-load using OpenACC is shown in Fig. 11. The replacement of OpenACC with
OpenMP off-loading and of P3DFFT with heFFTe, a GPU-enabled scalable 3D FFT library [11], is under
active investigation.

Development of a more modern and modular version of MEUMAPPS-SS written in C++ is also underway.
This version uses Kokkos [12] for performance-portable node-level parallelization. Current development is
focused on using the CUDA back end for NVIDIA GPUs, but the code is ready to leverage the HIP back
end for AMD GPUs and back ends for other architectures as they become available. Calculations with the
C++ version of MEUMAPPS-SS can perform GPU-enabled 3D FFTs by using the AccFFT [13] or heFFTe
libraries. Both libraries use pencil MPI domain decompositions and use the FFTW library for 1D FFTs on
CPUs and the cuFFT library [14] for 1D FFTs on GPUs.

In typical MEUMAPPS-SS simulations, ∼80 % of the runtime is spent solving linear elasticity equations
for mechanical equilibrium at each time step. Therefore, the test problem for GPU speedups on Summit
was chosen to be a mechanical equilibrium calculation. For calculations with a 4003 grid on one Summit
node (42 IBM Power9 CPU cores and six NVIDIA Volta V100 GPUs), the Fortran/OpenACC version of
MEUMAPPS-SS exhibited a 7× nodal GPU speedup (for which the CPU-only baseline used all 42 CPU cores)
and a 10× per-MPI-task GPU speedup (for which the CPU-only baseline used six CPU cores, one for each
GPU). The C++/Kokkos version exhibits a 3× nodal GPU speedup and a 16× per-MPI-task GPU speedup.
Despite the lower nodal GPU speedup, the runtime for the fastest single-node C++/Kokkos calculation is
nearly half that of the fastest single-node Fortran/OpenACC calculation, likely due to a combination of
improved memory management and improved FFT library performance. For both codes, most of the runtime
was spent in FFT library calls, which highlights the importance of high-performance FFT libraries to this
portion of the project.

ExaConstit (Stage 3)

ExaAM uses three open-source code bases for these finite element methods (FEM) simulations, two of
which (ExaCMech and ExaConstit) are supported by ExaAM. The crystal plasticity constitutive response is
handled by the library ExaCMech [15]. It is coupled with ExaConstit [16], a general quasistatic nonlinear
solid mechanics velocity-based finite element application built on the MFEM framework [17]. ExaCMech uses
the RAJA library [18] to abstract away the CUDA and HIP-type kernel launches. RAJA is used to wrap the
entire constitutive model into one large compute kernel that is launched on the device. Within ExaConstit,
different GPU strategies are being examined. The dominant computational cost within ExaConstit is the
series of linearized system solves within a Newton-Raphson scheme to obtain the velocity field. In the
currently employed approach, the linearized system matrix is never fully assembled on the GPU. Instead,
matrix-free methods are used that perform the action of the stiffness matrix [19–21]. One disadvantage
of using matrix-free methods is the loss of traditional preconditioners that are used within most FEM
implementations. Therefore, ExaConstit resorts to a matrix-free Jacobi preconditioner. Depending on the
assembly method—partial assembly (PA) on the GPU [19, 21], element assembly (EA) on the GPU [20],
or full assembly (FA) on the CPU—ExaConstit exhibits different strong scalability on Summit. This is
shown in Fig. 12 for meshes with 1 and 8 million linear hexahedron elements in simulations in which the
polycrystal undergoes monotonic loading out to 1 % strain. The PA method exhibits perfect scaling, FA
exhibits acceptable scaling, and the EA exhibits poor scaling. Any GPU-only simulation used six GPUs and
six CPUs per node, and the CPU-only simulations used all CPUs on a given node. Although the EA method
exhibits poor scaling, it is the most performant and allows us to run the hundreds of simulations necessary
for the challenge problem concurrently. Further speedups and reduced start-up costs could be obtained by
using more efficient linear and nonlinear solvers.

Next Steps

As discussed, the basic physics and inter-component coupling in our computational workflow was established.
For FY21, we will turn our capability milestone to optimizing GPU utilization for exascale readiness. Although
most of our components are written with GPU utilization in mind using the Kokkos and RAJA potability
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Figure 11: MEUMAPPS-SS scaling on Summit.

layers, we anticipate significant optimization from analyzing data layout and data movement.
Our FY21 demonstration milestone is intimately tied to our FY21 milepost, “Perform initial part-scale

build using self-consistent properties (process-aware material model).” Specifically, we will:

• identify multiple thermomechanically distinct locations in the AMB2018-01 build,

• execute our process-to-property workflow for these locations;

• develop and execute workflows for the ensemble of orientations for each microstructure.

• develop an AM-specific flow stress model for use in build simulation, and

• perform full part build simulation (Diablo) by using an AM-specific material model.

We initiated a collaboration with the ECP Workflow Project to use this use-case to build an automated
workflow manager for the ExaAM project.

3.6 QMCPACK

The ability to computationally design, optimize, or understand the properties of energy-relevant materials
is fundamentally contingent on the existence of methods to accurately, efficiently, and reliably simulate
them. Quantum-mechanics-based approaches must necessarily serve as a foundational role since only these
approaches can describe matter in a truly first-principles (i.e., parameter-free) and thus robust manner.
Materials design has progressed from the study of simple bulk properties to targeting collective effects in
strongly correlated materials, such as magnetic ordering, phase transitions, and quantum coherence. This
requires a fundamentally different set of computational tools than have been used in the past. quantum
Monte Carlo methods are ideal candidates for this because they robustly deliver highly accurate calculations
of complex materials that do not artificially bias solutions of a given character. Significantly, with increased
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Figure 12: Strong multinode, multi-GPU scaling on Summit for various assembly
methods. Thinner lines represent the 1 million element mesh, and the thicker
lines represent the 8 million element mesh. Dashed lines represent perfect scaling
for each assembly method and mesh size.
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computer power, the few approximations in these methods can be tested and systematically reduced, which
is not possible with other first-principles methods. Saritas, Ming, Du, and Reboredo [22] provides a recent
study of defects in phosphors.

The trade-off is that the computational demands of the QMC method are large. For example, petascale
computers have allowed for calculations of the magnetic exchange in a copper oxide important for understanding
the mechanism of high-temperature superconductivity to be performed. However, these calculations involved
a highly symmetric supercell containing only 56 atoms when a realistic model that considered the defects
and dopants of actual superconductors would require at least several hundreds of atoms. The 10 year
challenge problem is to simulate transition metal oxide systems of approximately 1000 atoms to 10 meV
statistical accuracy, such as complex oxide heterostructures that host novel quantum phases, by using the
full concurrency of exascale systems. The additional power and parallelism of exascale QMC will provide
the essential predictive and quantitative capability for these and related materials that lie well beyond
the capabilities of existing methods. Exascale provides the opportunity for highly impactful and enabling
benchmark accuracy calculations on these materials, providing the reference calibration data that is missing
from essentially all current quantum mechanics-based materials calculations. This capability will be highly
useful across materials science, nanoscience, and physics communities, particularly where experimental data
are costly or difficult to obtain.

3.6.1 QMCPACK: Science Challenge Problem Description

The challenge problem is to calculate the cohesive energy of a large supercell of nickel oxide (NiO) by using
QMCPACK and diffusion QMC to an accuracy of 0.010 eV per NiO formula unit at capability scale in
a reasonable and scientifically productive amount of wallclock time (e.g., <1 d). The team anticipates a
minimum 256 atom supercell up to a 1024 atom supercell, as specified in the team’s original proposal, but the
current FOM is more flexibly defined and includes the formal power law scaling of the method with system
size. Details on the challenge problem are provided in Table 23.

NiO was selected as emblematic of the science challenges involving the complex physics of transition
metal oxides. This classic Mott insulator (more accurately a charge transfer insulator) defies nonempirical
predictions by other methods. NiO is also part of the class of materials that is being studied by a DOE
BES-funded Computational Materials Sciences Center. Success for the NiO problem will indicate that a high
and productive rate of computational work could be achieved for other challenging materials, including those
with strong electronic correlations, novel magnetic states, and a host of novel quantum phases.

Although reaching the FOM indicates an ability to measure the total energy to a good accuracy with
reasonable time to solution, a highly productive science tool requires significantly more functionality, including
a wider range of wave functions, a large range of observables (e.g., electron density, forces, density matrices),
a sophisticated trial wave function optimization scheme, support for multiple QMC methods, and viable
sources of input trial wave functions. The design templates established by reaching the FOM should be
transferable since these additional capabilities add computational cost and are thus thought to increase the
ease of mapping to different architectures. One key stretch goal is to ensure that low-symmetry materials can
be studied. Although these do not change the electron count and thus formal computational cost, memory
requirements are greatly increased. Therefore, this requires support for localized orbitals to reduce the
memory usage and/or successful development of latency-hiding techniques to enable the use of slower or
remote memory.

3.6.2 QMCPACK: KPP Stretch Goal

One stretch goal is to complete the QMC workflow for a QMC calculation of a general low-symmetry non-bulk
system (e.g., defect or interface) by using localized orbitals.

Exact achievable size/complexity will depend on the memory of A21 and Frontier, and memory reductions
are achievable by using the localized RMG orbitals compared with delocalized schemes (7× for 512 atom
NiO, 6.5 Bohr localization).

RMG localized orbital implementation and support in QMCPACK must be sufficiently capable and
portable.
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Table 23: QMCPACK challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Predict the cohesive energy of a large supercell of NiO by using
QMCPACK and diffusion QMC to an accuracy of 0.010 eV per NiO
formula unit.
The FOM formula allows for the calculation of an arbitrary supercell
size, but a 1024 atom supercell calculation on exascale systems is
anticipated.
To ensure that the chosen target problems are realistic and
representative, trial wave functions and pseudopotentials are specified
that are the same as in the team’s recent publications [23] (i.e., they
passed scientific peer review and obtained sufficiently accurate results).

Numerical approach,
algorithms

QMC, basis-set, many-body WF approach.

Simulation details: problem
size, complexity, geometry, and
so on

The problem is defined by a NiO primitive bulk cell multiplied to the
chosen supercell size. This sets the number of valence electrons in the
computational problem, which scales in cost with the cube of the
number of electrons.

Demonstration calculation
requirements

Calculations should execute to completion, and the resultant statistical
analysis of the equilibrated QMC data should yield of 0.01 eV/formula
unit error bar.

Resource requirements to run
demonstration calculation

Depending on the simulated problem size, a complete FOM run is
expected to use the full exascale machine for 1–4 h. The FOM can also
be accurately estimated by measuring throughput at the full scale of the
machine.
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3.6.3 QMCPACK: Figure of Merit

The FOM for QMCPACK is defined as:

FOM =
NsamplesNelec

wall time
. (3)

The baseline FOM is 1.004× 1014 on 18,000 Titan nodes. QMCPACK v3.5.0 obtains a FOM of 1.91× 1014

on 18,000 Titan nodes through the use of the “Fahy” determinant update variant.

FOM Update

The end of FY20 FOM for QMCPACK based on a 512 atom NiO supercell is now 37.1, based on 95 %
scaling from a single node run on Summit. This FOM is obtained with the open-source LLVM/clang
development compiler, which can now be used with QMCPACK as a result of improvements during the year.
Performance essentially matches that of the IBM XL compiler (37.4).

3.6.4 QMCPACK: Progress on Early and Pre-Exascale Hardware

During FY20, the project emphasis has been on improving the initial proof of concept performance portable
implementation developed in FY19, as well as on trialing and optimizing this new version on Summit and
early access hardware and software. This new implementation involves a significant update to the architecture
of the application to increase the available numerical work for accelerator execution by enabling batching
of operations over groups of MC walkers. The “legacy” CUDA implementation employed this concept for
efficiency and is used as a reference. Therefore, the measured performance tests the performance of any new
hardware/software and the updated application architecture.

The initial performance-portable implementation of the real space QMC algorithms uses OpenMP target
off-load. Although a few OpenMP 5.x features are desired, the implementation primarily depends on an
efficient and performance implementation of standard OpenMP 4.5 off-load capabilities. The primary difficulty
faced by the project has been the immature nature of OpenMP implementations, whether in open-source or
vendor proprietary compilers and runtimes. The QMCPACK project worked with the ECP SOLLVE project
to improve open-source LLVM/Clang toward production quality (19 closed and six open bug reports) and
contributed two patches directly to LLVM to increase performance. Over 20 bug reports were each submitted
to AMD and Intel for significant problems, and additional feedback was provided to Cray for their compiler.
All compilers have significantly improved, but important issues remain. Many of these issues directly impact
achievable performance.

Performance on Summit

Performance on Summit is measured against the legacy CUDA implementation for a range of problem sizes.
Figure 13 shows the current performance. The performance is twice that of the legacy CUDA implementation
for very large problems; however, for even a 3072 electron problem (256 atom NiO), performance is significantly
before the legacy CUDA application. Correctness is also checked via the application test suite, which was
expanded throughout the year, particularly in the areas of unit tests and in deterministic integration tests.
When the latest LLVM development compiler (approximately the LLVM 11) is used, the full test suite now
passes on Summit. As a result, QMCPACK on Summit no longer depends on the IBM XL compiler, and the
application can adopt C++17, which is well supported by LLVM.

Performance characteristics were studied and profiled. For the largest problem sizes, the performance-
portable implementation is faster than legacy CUDA implementation primarily due to more efficient matrix
updates and linear algebra. These are the cubic scaling parts of QMC and dominate for large problems
sizes. For smaller problems, performance is poor primarily due to the lack of full OpenMP “target nowait”
support for true asynchronous execution with the current LLVM compiler and OpenMP runtime. As a
result, the CPU host thread can not progress and either queues additional GPU work or runs GPU-inefficient
tasks. A partial implementation is currently underway via the ECP SOLLVE project. The legacy CUDA
implementation launches these kernels asynchronously and thus is more efficient. Additionally, many particle-
oriented operations—primarily distance table computation—are still run on the CPUs. These operations
will be moved to the GPUs, and some data transfers will consequently be removed. These two changes are
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Figure 13: Throughput of real-space diffusion QMC performance-portable
implementation relative to legacy CUDA implementation for various problem
sizes. Overall, 6144 electrons correspond to 512 NiO atoms. For this large problem
size, the new implementation has more than twice the throughput compared
with the legacy CUDA. However, for all smaller problems, the performance is
significantly slower.

expected to greatly improve performance for smaller problem sizes. Large problem performance will also
increase, although to a lesser extent, yielding an improved FOM.

Besides progress within the ECP, achieving these performance increases is critically important for science
production in 2021 on Summit by Innovative and Novel Computational Impact on Theory and Experiment
(INCITE)-supported users of the QMCPACK code.

Next Steps

Based on the results obtained thus far, the new architecture for performance portability appears capable of
delivering a highly successful FOM on Frontier or Aurora. The changes to the code base have been extensive
due to the updates in memory handling and execution needed to obtain high and portable performance.
Expanded testing is aiding the refactoring and redesign and allowing the legacy parts of the application to
be rewritten, where necessary. As planned in the FY21 milestones, the project will continue to assess and
optimize performance on pre-exascale hardware and move more functionality to the new performance-portable
implementation in a phased manner. These developments will also enable production science on Summit by
using exactly the same code base that will be used on the exascale machines. Progress depends particularly
on advances in the maturity of the OpenMP target off-load implementations in the open-source and vendor
compilers. The project will continue to work with the ECP SOLLVE project and vendors to prioritize critical
feature implementations and bug fixes.

4. ENERGY APPLICATIONS

End State: Deliver a broad array of science-based computational applications able to provide—
through the effective exploitation of exascale HPC technologies—breakthrough modeling and
simulation solutions that yield high-confidence insights into a set of critical problems and challenges
that positively impact the nation’s energy security.

The energy applications (EA) L3 area (Table 24) focuses on modeling and simulating existing and future
technologies for the efficient and responsible production of energy to meet the growing needs of the United
States. The applications in this WBS L3 generally require the detailed modeling of complex facilities and
multiple coupled physical processes. Their goal is to help overcome obstacles to efficiently and safely deliver
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Table 24: Summary of supported EA L4 projects.

WBS
number

Short name Project short description KPP-X

2.2.2.01 ExaWind Predictive wind plant flow modeling KPP-2

2.2.2.02 Combustion-
Pele

Combustion engine and gas turbine design KPP-2

2.2.2.03 ExaSMR Coupled MC neutronics and fluid flow simulation of small
modular reactors

KPP-1

2.2.2.04 MFIX-Exa Multiphase flow reactor design KPP-2

2.2.2.05 WDMApp High-fidelity whole device modeling of magnetically
confined plasmas

KPP-1

2.2.2.06 WarpX Plasma wakefield accelerator design KPP-1

energy.
These applications are highly complex and involve modeling intricate geometric details and including

a broad range of physical phenomena. One key additional requirement for EA is the broader community
adoption of the computational models and methods developed in the project or, in some cases, the virtual
datasets or physical insights that result from simulations carried out in the ECP. Additionally, applications
are expected to influence—directly or indirectly—design choices for exascale hardware and software.

4.1 ExaWind

The scientific goal of the ExaWind project is to advance fundamental understanding of the flow physics
governing whole wind plant performance, including wake formation, complex-terrain impacts, and turbine-
turbine interaction effects. Greater use of the nation’s abundant wind resources for electric power generation,
reaching 30 % of US electrical supply, will have profound societal and economic impacts, strengthening US
energy security through greater diversity in its energy supply, providing cost-competitive electricity to key
regions across the country, reducing greenhouse-gas emissions, and reducing water used in thermoelectric
power generation.

One key challenge of the wide-scale deployment of wind energy in the utility grid without subsidies is
predicting and minimizing plant-level energy losses, which are currently estimated to be 20 % in relatively flat
areas and much higher in regions of complex terrain. Current methods for modeling wind plant performance
fall far short due to insufficient model fidelity and inadequate treatment of key phenomena combined with the
lack of the computational power needed to address the wide range of relevant length scales associated with
wind plants. Thus, the exascale challenge is the predictive simulation of a wind plant that comprises O(100)
multimegawatt wind turbines sited within a 10 km× 10 km area with complex terrain, involving simulations
with O(100) billion grid points. These predictive, physics-based, high-fidelity computational models validated
with targeted experiments will drive innovation in the blade, turbine, and wind plant design processes by
providing a validated “ground truth” foundation for new turbine design models, wind plant siting, operational
controls, and the reliable integration of wind energy into the grid.

This multidisciplinary project embodies a systematic development of the modeling capability and com-
putational performance and scalability required for effective exascale simulations. The project plan builds
progressively from predictive petascale simulations of a single turbine—in which the detailed blade geome-
try is resolved, meshes rotate and deform with blade motions, and atmospheric turbulence is realistically
modeled—to a multi-turbine array in complex terrain.

This new M&S capability will establish a virtual wind plant test bed that will revolutionize the design
and control of wind farms and result in a significant advance in the ability to predict the response of wind
farms to a wide range of atmospheric conditions.
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The primary application codes in the ExaWind environment are Nalu-Wind, AMR-Wind, and OpenFAST.
Nalu-Wind is an unstructured-grid, acoustically incompressible computational fluid dynamics (CFD) code
written in C++, and it is a wind-specific version of the Nalu code, an large eddy simulation (LES) research
code developed at Sandia National Laboratories. OpenFAST is a whole-turbine simulation code written in
Fortran 2003 that grew out of FAST version 8. Nalu-Wind contains the infrastructure for unstructured-grid
discretization of the underlying models, and it heavily uses the Trilinos Sierra Toolkit, which provides an
unstructured mesh, in-memory, parallel-distributed database. The linear systems can be solved with hypre,
Trilinos, or some combination of the two. In a new hybrid modeling approach adopted in 2020, the team
created AMR-Wind, which is a structured-grid incompressible flow CFD solver with an adaptive mesh
refinement capability, and is built on the AMReX libraries. The modeling approach will have a Nalu-Wind
model surrounding the turbine blades, where it is important to resolve the blade boundary layers with body-
conforming meshes. The blade meshes reside within a larger structured-grid AMR-Wind mesh. Coupling
between meshes is handled with the with the overset approach for which mesh connectivity and constraints
are created with the Topology Independent Overset Grid Assembler (TIOGA). In collaboration with the
DOE Wind Energy Technologies Office High-Fidelity-Modeling project, Nalu-Wind and AMR-Wind are being
continually appended and improved with wind-specific capabilities, including a new time step algorithm,
fluid-structure-interaction capabilities, overset-mesh capabilities, and hybrid Unsteady Reynolds-averaged
Navier-Stokes (URANS)/LES models.

4.1.1 ExaWind: Science Challenge Problem Description

The ExaWind challenge problem is a predictive simulation of a wind farm with tens of megawatt-scale
wind turbines dispersed over an area of 50 km2. The goal is to capture crucial phenomena that are under-
resolved in today’s models, including wake formation, complex-terrain impacts, wake-atmosphere interaction,
turbine-turbine interaction, and blade boundary-layer dynamics. This target requires an M&S capability
that resolves turbine geometry and uses adequate grid resolution down to micron scales within the blade
boundary layers. The resolution must capture the upstream chord-scale atmospheric turbulent eddies, the
generation of near-blade vorticity, and the propagation and breakdown of this vorticity within the turbine
wake to a distance of many rotor-diameters downstream. This application uses the Nalu-Wind CFD code
and the OpenFAST turbine-simulation code that were specifically designed for wind turbine and wind farm
simulations. The simulation will require a hybrid Reynolds-averaged Navier-Stokes (RANS)/LES turbulence
model, fluid-structure interaction, and atmospheric turbulent flow.

The simulation will contain at least four megawatt-scale turbines (e.g., NREL 5 MW reference turbines)
organized in a 2× 2 array and residing in a 3 km× 3 km domain with a height of at least 1 km. A hybrid-
RANS/LES model will be employed for which a URANS model will be used near turbine surfaces, and an
LES model will be used in the wake region. The simulation will have a mean wind speed at the turbines’
rated speed (e.g., 11.4 m/s for the NREL 5 MW reference turbine). The model will require at least 20 billion
grid points and 100 billion degrees of freedom (DOF) to resolve the system, and near-blade grid spacing will
be such that the viscous sublayer within the RANS region is resolved. A successful simulation will require an
optimized solver stack that minimizes the time per time step. A scientifically meaningful simulation duration
will be for at least one domain transit time (about 370 s for the 3 km× 3 km domain at 11.4 m/s). The team
will demonstrate that such a simulation is feasible within 4 weeks of system time. Details on the challenge
problem are given in Table 25.

4.1.2 ExaWind: KPP Stretch Goal

The stretch-goal simulation will contain at least nine megawatt-scale turbines (e.g., NREL 5 MW reference
turbines) organized in a 3× 3 array, and residing in a 4 km× 4 km fluid domain with complex terrain and a
height of at least 1 km. A hybrid RANS/LES model will be employed for which an unsteady RANS model will
be used near turbine surfaces, and an LES model will be used in the wake region. The simulation will have a
mean wind speed at the turbines’ rated speed (e.g., 11.4 m/s for the NREL 5 MW reference turbine). The
model will require at least 30 billion grid points and 150 billion DOF to resolve the system, and near-blade
grid spacing will be such that the viscous sublayer within the RANS region is resolved. A successful simulation
will require an optimized solver stack that minimizes the time per time step. A scientifically meaningful
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Table 25: ExaWind challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Acoustically incompressible fluid flow with fluid-structure interaction. A
hybrid RANS/LES model in which the unsteady-RANS model will be
used near turbine surfaces and an LES model will be used in the wake
region.

Numerical approach,
algorithms

Hybrid unstructured-grid and structured-grid finite volume solvers with
overset meshes and implicit pressure projection. Linear and nonlinear
structural finite element models.

Simulation details: problem
size, complexity, geometry, and
so on

Four megawatt-scale turbines in a 2× 2 array residing in a volume of
fluid with dimensions 3 km× 3 km× 1 km. Minimum grid size of 20
billion points with 100 billion DOF; the mesh will be refined to resolve
the viscous sublayer on blade surfaces.

Demonstration calculation
requirements

Simulation will be run with a time step size that represents statistically
steady flow and corresponds to C = O(1) in most of the LES regions
and C � 1 in the RANS regions, where C is the Courant number.

Resource requirements to run
demonstration calculation

1 hour at full system utilization.

simulation duration will be for at least one domain transit time of about 500 s for the 4 km× 4 km domain at
11.4 m/s. The team will demonstrate that such a simulation is feasible within 4 weeks of system time.

4.1.3 ExaWind: Capability Plan

Successfully simulating the ExaWind challenge problem will require a complete set of physics models for
hybrid RANS/LES simulations, meshes capturing complex moving geometry and an extreme range of scales,
and solver algorithms and infrastructure that are optimized for next-generation platforms (i.e., GPUs). The
ExaWind software stack has three interconnected solvers:

• Nalu-Wind, an unstructured-grid finite-volume solver built on Trilinos STK that can use linear solvers
and preconditioners from Trilinos or hypre;

• AMR-Wind, a structured-grid background solver built on AMReX that is coupled to Nalu-Wind through
the TIOGA overset-mesh interface; and

• OpenFAST, a wind turbine simulation code that includes models for blades, tower, control system, and
other features.

An inherent challenge for incompressible-flow CFD is the need to solve global Poisson-type (i.e., pressure)
and Helmholtz-type (i.e., momentum and scalar) linear systems at every time step at least once. In the
original ExaWind solver pathway, a global Nalu-Wind model was envisioned, and there was the need to rebuild
those linear systems and preconditioners at every time step due to mesh motion. These every-time-step
requirements make a CPU plus accelerator (i.e., host plus device) solver pathway for which linear systems
and preconditioners are created on the CPU and passed to the accelerator for solution impractical because
the data-movement costs are expected to be too high. The new hybrid-solver approach alleviates some of
these every-step costs in that linear-system graphs will remain unchanged, although linear-system coefficients
and preconditioners must be reconfigured at every step. The ExaWind capability plan is thus designed to
maximize the portion of the CFD solver stack that can run on the GPUs. However, the OpenFAST turbine
models are planned to remain on the CPUs.

In ExaWind, the Nalu-Wind and Trilinos components are preparing for next-generation architectures with
Kokkos, a parallel-performance abstraction layer. The ExaWind team has been converting the Nalu-Wind
kernels to use Kokkos for threadable operations. The Trilinos software stack is being converted to Kokkos
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parallelization under ECP/Advanced Technology Development and Mitigation (ATDM) funding. This is
being done in close collaboration with ExaWind, and members of the ExaWind team include core members
of the Kokkos, Kokkos-Kernels, STK, and MueLu teams. The ExaWind team is also working closely with the
hypre team in preparing hypre for the effective use of GPUs. The hypre strategy for performance portability
is to use accelerator-specific APIs (e.g., NVIDIA, CUDA, AMD HIP). AMR-Wind relies on the AMReX
abstraction layer in which the architecture-specific APIs are hidden from AMR-Wind.

The potential for the ExaWind codes to predict the complex flow dynamics of wind farms depends on the
validity of the underlying models. For practical grid resolutions, hybrid RANS/LES models have well-known
deficiencies, and they need additional models to predict the transition between separated and attached flows,
which are important in wind turbine dynamic stall events. Hence, improving the turbulence models in the
ExaWind software stack has been and will continue to be an integral part of the project.

The following is a series of yearly mileposts that must be met for ExaWind to successfully complete its
challenge problem.

FY20: Demonstrate host + device simulations on wind-relevant static-mesh simulations (e.g., highly resolved
parked-turbine simulation) for which linear-system creation is accomplished on the host and solves are
performed on the device. These simulations will establish the performance of linear-system solves on
the device from which performance-improvement plans will be devised. Understanding the weak and
strong scaling performance and identification of hot spots that could benefit from off-loading to the
device are important.

FY21: Demonstrate a full-turbine simulation with moving meshes and the full solver stack (AMR-Wind +
Nalu-Wind + OpenFAST) and where linear solves and overset search are performed on the device. These
simulations will establish the performance of linear system and preconditioner creation on the device
and will further inform solve-phase improvements. Weak and strong scaling performance and progress
toward sufficiently small time per time step will be documented. Simulations will be demonstrated up
to at least 10 billion grid points.

FY22: Demonstrate multi-turbine simulation with full hybrid structured/unstructured moving grid with the
maximized amount of the software stack running on the device. Having a structured-grid background
solver is crucial for achieving the ExaWind time per time step requirements. Such simulations will
require a robust and accurate decoupling of the elliptic linear systems. Performance results will
indicate the likelihood of successfully simulating the ExaWind challenge problem. Simulations will be
demonstrated up to at least 20 billion grid points.

FY23: Demonstrate using 1 h of the full exascale system that the ExaWind challenge problem can be
executed with sufficiently small time per time step, then pursue additional system time to complete the
full challenge problem.

4.1.4 ExaWind: Progress on Early and Pre-Exascale Hardware

Performance on Summit

The ExaWind team used Summit extensively in FY20 for performance testing with a focus on strong
and weak scaling and on CPUs and GPUs. This section describes the representative results. As described
previously, the two primary CFD solvers are Nalu-Wind and AMR-Wind. Under the new hybrid solver
strategy, AMR-Wind is the principal solver for the background turbulent atmospheric flow, and Nalu-Wind
is the principal solver for the near-turbine flow, including blade boundary layers. As such, we examined
independent solver performance in the target applications (i.e., AMR-Wind for atmospheric boundary layer
[ABL] simulations and Nalu-Wind for blade-resolved turbine simulations). Performance testing of the coupled
hybrid-solver configuration is the focus of the FY21 Q2 milestone.

Figure 14 shows the time per time step strong- and weak-scaling performance for ABL simulations. Strong
scaling is shown for 38 million and 4.7 billion grid points. The strong-scaling limit is about 1.2 million grid
points per GPU. For the 38 million grid point simulations, GPUs can offer a significant speedup over CPUs.
The time step size for the 38 million grid point simulations is 0.5 s, and these simulations demonstrate that
these ABL simulations can be run at faster than real time. Weak scaling (up to 2.5 billion grid points) shows
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(a) Strong scaling. (b) Weak scaling.

Figure 14: Strong-scaling (a) and weak-scaling (b) studies performed with AMR-
Wind on Summit for atmospheric boundary layer simulations. The strong-scaling
limit was observed around 1.2 million grid points per GPU. The inset in (a) shows
a representative simulation result.

that CPU-based simulations show near-ideal scaling. GPU-based simulations show deviation from perfect
weak scaling but still maintain excellent efficiency.

As described previously, Nalu-Wind can use various combinations of Trilinos and hypre to solve the
underlying linear systems. Figure 15 shows the time per time step strong scaling performance on Summit for
23 million grid point blade-resolved simulations of the NREL 5-MW reference turbine. The left-hand side of
Figure 15 shows results for which either hypre or Trilinos is used for the mass-continuity equations (i.e., the
pressure Poisson system), and Trilinos is used for all other equations (i.e., momentum and scalars). The best
performance is clearly seen with hypre on the CPUs. The right-hand side of Figure 15 shows strong scaling
results for the best solver configuration of those examined, which uses hypre for all equations. With enough
work for the GPUs, the hypre GPUs simulations can outperform those on the CPUs on a per-node basis.
The time step size for these simulations is only 4 ms, so additional strong-scaling improvement is crucial
for ExaWind’s success for practical time to solution. Because of the hybrid-solver strategy, the individual
Nalu-Wind models will be of modest size (e.g., less than 15 million grid points), so the team is less concerned
with the weak scaling of Nalu-Wind.

Next Steps

The ExaWind team will continue to push strong and weak scaling of AMR-Wind and Nalu-Wind on
Summit. Although Nalu-Wind development on the pre-exascale systems is on hold as the team waits for
Trilinos support, the team will continue to advance AMR-Wind. FY21 activities will focus on evaluating and
improving GPU performance of the hybrid-solver strategy, establishing a next-generation hybrid RANS/LES
turbulence modeling approach, and performing some of the highest fidelity wind energy simulations to date.

4.2 Combustion-Pele

Aggressive national goals to significantly reduce petroleum use and greenhouse gas emissions require significant
improvements in all aspects of the nation’s energy use. Combustion processes have historically dominated
electrical power production and transportation systems. Despite significant advances in improving the
efficiency and reducing the costs of alternative energy sources, combustion-based systems are projected to
dominate the marketplace for decades. Consequently, these systems must be optimized for energy efficiency
and reduced emissions.

This project is structured around providing a combination of first-principles direct numerical dimulation
(DNS) and near first-principles (DNS/LES hybrids) simulations to advance understanding of fundamental
turbulence-chemistry interactions in device-relevant conditions. The exascale motivating problem is to perform
high-fidelity simulations of the relevant processes in a low-temperature reactivity-controlled compression
ignition (RCCI) internal combustion engine. The relevant processes include turbulence, mixing, spray
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(a) (b)

Figure 15: Strong-scaling studies performed with Nalu-Wind on Summit for
blade-resolved simulations of the NREL 5-MW reference turbine. (a) Results
in which the continuity equation was solved with hypre or Trilinos, and other
equations were solved with Trilinos. (b) The best-configuration results for which
all equations are solved in hypre. The inset in (b) shows representative simulation
results.

vaporization, low-temperature ignition, flame propagation, and soot/radiation. RCCI is thermodynamically
favorable relative to existing engines and thus holds the promise of groundbreaking efficiencies while operating
in a regime that limits pollutant formation. The road map toward this exascale-era motivating problem
includes simulating a multi-injection low-temperature diesel jet into an open domain with a large alkane fuel
undergoing two-stage ignition processes, simulating dilute spray evaporation and mixing, and simulating
multi-injection with fuels of varying reactivity in a geometry that influences the mixing field. The latter of
these forms the challenge problem to demonstrate a new exascale capability.

The motivating problem that anchors the team’s proposed development is a sufficiently realistic simulation
of the in-cylinder processes in an internal combustion engine by using low-temperature combustion, for
which RCCI is the exemplar. The enabled exascale-era simulations will address key scientific questions
regarding the mixture formation effects, multistage ignition of a diesel surrogate fuel, lifted flame stabilization,
jet re-entrainment affected by cylinder-wall geometry, and emissions. The simulation will account for
the isentropic compression, subsequent injection of the high-reactivity fuel, and combustion processes in
a compression ignition engine. Necessary physics include gas compression and models of fuel injection
process, spray vaporization (i.e., injection of liquid fuel sprays into high-pressure conditions), mixing, and
four combustion processes—autoignition, flame propagation, soot, and thermal radiation—all in a non
trivial engine geometry. The scenario involves kinetically controlled processes in turbulent combustion,
including ignition, extinction, and emissions. The application for this project, Pele, implements a hybrid
LES/DNS approach in the compressible and low-Mach limits in which the team will refine to the DNS limit
by using the machinery of adaptive mesh refinement (AMR), as necessary, to capture turbulence/chemistry
interactions while restricting resolution to that required for a high-fidelity LES model far from the flame.
The physical problem characteristics and the computational approaches required to be performant on the
exascale architecture used to address them are summarized in Table 26.

Progress is needed on several challenging but tractable fronts. Existing simulation tools must evolve
to perform well on exascale architectures, maintaining existing physics capability along with performance
portability. Algorithmic and implementation issues involve new memory management and data layouts
that respect memory systems of emerging architectures, new load balancing and communication strategies,
communication-avoiding linear solvers that trade communication for computation, strategies for asynchronous
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Table 26: Physical characteristics and computational approaches.

Characteristic/need Approach

Impulsively started jets with disparate scales
between fronts and turbulence. (Outer scales:
10 cm, milliseconds; inner timescales: micrometers,
nanoseconds)

Dynamic adaptive mesh refinement

High-speed injection followed by subsonic
conditions downstream

Compressible and low-Mach capabilities

Long-time horizons to set up turbulence for
studying fundamental TCI

Hybrid DNS/LES (non-reacting LES, DNS for
flame)

Lean, rich, and low-, intermediate-, and high-
temperature chemistry critical in multistage
ignition and formation of soot precursors.

Accurate and detailed thermochemistry of
hydrocarbon fuels derived from theory-driven
automatic mechanism development and reduction

Liquid fuel injection Lagrangian polydisperse spray model

Coupling between mixture preparation and
emissions

Detailed kinetics including emissions, soot model
with radiation

Mixture preparation dependent on re-entrainment
of combustion products

Realistic piston dish and cylinder wall geometry

task execution, and in situ analytics approaches. Improved modeling of physical processes is also needed. The
fidelity of physics models that are tractable at the exascale greatly exceeds that of current petascale codes.
High-fidelity physical models for nonideal fluid behavior, sprays, soot, and radiation, as well as nontrivial
geometry, will enable a significant improvement in the realism of combustion simulations as typified by the
target problem. Thirdly, advances in numerical algorithms will be needed to treat new and improved physical
process models, optimize linear solvers to obtain good convergence rates with realistic geometry, improve
coupling of the various physical processes to expose parallelism while maintaining a high order of accuracy,
and optimize solution algorithms to handle the effects of nonideal chemistry.

4.2.1 Combustion-Pele: Science Challenge Problem Description

The specific science-based challenge problem is derived from the road map toward the motivating exascale era
problem. Specifically, the challenge problem demonstrates the ability to simulate the interaction of two fuels
with varying reactivity under a multipulse injection strategy into engine-relevant geometry. It is a baseline
for a series of simulations that will enable the impacts of effects to be isolated, such as spray evaporation
on mixture fraction and temperature, alternative fuels, and the design of strategies to control combustion
phasing and subsequent combustion rates. The problem will be tractable under a realistic allocation by using
the full capabilities of an exascale machine; within the projected 50–100× increase in productive capability of
Frontier beyond the capabilities of Titan, the simulation will execute in approximately 2–4 weeks of wall
time. Challenge problem details are given in Table 27.

4.2.2 Combustion-Pele: KPP Stretch Goal

As a stretch goal, multiphase fuel injection and soot emissions will be simulated in Pele to provide more
realistic mixture formation (i.e., inhomogeneities of fuel and enthalpy distributions) conditions for downstream
combustion processes and mechanistic understanding of particulate generation from fuel wall films in gasoline
direct injection engines. Downstream combustion and emissions processes in engines are exquisitely sensitive
to upstream mixture formation. Spray droplets will be treated with Lagrangian parcels, which will be
injected at the inlet adopting the multipulse injection strategy of our KPP baseline problem. The droplet size
distribution resulting from the upstream spray atomization processes will be obtained offline from existing
volume-of-fluid DNS of atomizations, LES of engine spray combustions, and/or engine experiments. The
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Table 27: Combustion-Pele challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Multiscale CFD with reacting flows in low-Mach and compressible
formulations with DNS+LES turbulence resolution with multispecies
chemistry.

Numerical approach,
algorithms

Time-explicit and deferred correction strategies in a compressible and
projection-based low-Mach formulation, respectively. Finite volume
spatial discretizations on block-structured AMR grids with embedded
boundaries. Hybrid DNS/LES to enable fully resolved (i.e., DNS)
treatment in which turbulence chemistry interaction occurs and modeled
(i.e., LES) treatment to reduce resolution requirements in low-heat
releases portions of the flow.

Simulation details: problem
size, complexity, geometry, and
so on

Gas-phase simulation of four multiple jets interacting in a 1
4 scale

geometry (2.5 cm diameter) derived from a production engine piston
bowl with a flat head and centered fuel injector. Multiple pulses include
a low-reactivity and high-reactivity fuel that capture cross-mixing and
reactions between fuels by using ∼30–35 species; 1.5 ms physical
simulation time; four levels of hierarchical mesh refinement; finest grid
1.25 µm; and a realistic environment of >50 bar.

Demonstration calculation
requirements

Restart from the checkpoint that gives us a realistic development of
plume into geometry obtained by running the case with restricted
resolution (two levels of mesh refinement) and additional refinement
added at restart for a total of four levels, then run 10–20 time steps to
compute a realistic grind time that can be used to estimate the cost of
the full-time horizon.

Resource requirements to run
demonstration calculation

Estimate to run 20 time steps is 1.5 h by using the anticipated full
system.
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Table 28: Combustion-PELE mileposts.

Year Target

FY19 • Complete EB functionality in PeleLM.
• Create baseline GPU port of PeleC achieving S/T > 3.5 for non-EB-reacting

calculation.

FY20 • Compare CUDA vs. OpenACC for PeleC-GPU and select strategy for PeleLM.
• Prototype GPU chemistry strategy in PeleC and PeleLM.
• Optimize PeleC-GPU to achieve S/T > 10 for EB-reacting calculation.

FY21 • Achieve S/T > 15 for PeleC for gas-phase combustion in piston bowl geometry (EB)
with ndodecane chemistry (35 species).

• Achieve S/T > 10 for PeleLM for gas-phase combustion in piston bowl geometry (EB)
with ndodecane chemistry (35 species).

FY22 • Achieve S/T > 16 for PeleLM or S/T > 30 for PeleC.
• Generate restart file for challenge problem measurement through low-resolution

equivalent to challenge problem.

DNS of turbulent flame-wall interactions in the presence of fuel films will also be performed in Pele. Data
from the DNS will augment optical engine experiments to understand and predict the effects of temperature
and fuel/air equivalence ratio stratification on thermal pyrolysis and soot formation/transport from the fuel
wall films.

Recent advances in ML/AI software and hardware technologies—such as the deployment of Summit with
TPUs, GPUs, and CPUs-provide the potential to reframe the role of high-fidelity simulations in enabling
progress in combustion research and engineering design. Traditionally, the scientific process involves a
“human in the loop” to analyze a device-level experiment or challenge and abstract out a set of high-fidelity
simulations to be performed and used to develop reduced order models that in turn enable parameter
exploration, optimization, digital twins, and control strategies. With our stretch goal, we will attempt to
demonstrate two aspects of this workflow for which ML and AI can be transformative. First, AI techniques
currently show great promise for developing reduced order models (e.g., surrogate DNS, LES models) and
control strategies. Second, the judgement of the scientist based on experience and heuristics to determine the
necessary fidelity of the simulations for model development is critically important for effectively addressing
the motivating question of interest. As part of our stretch goal, we will demonstrate the use of ML and
AI techniques to take a description of a question of interest along with a device-level simulation to help
formulate the problem to be solved in terms of characteristics, such as the accuracy of the chemical mechanism,
turbulence treatment, multiphysics closure models, and the number of realizations. We will also explore the
ability of surrogate models via ML and AI that replicate the quantity of interest with similar accuracy as the
original high-fidelity simulation but at considerably lower computational cost.

4.2.3 Combustion-Pele: Capability Plan

The remaining direct barriers to executing the challenge problem require the completion of (1) adding
embedded boundary (EB) geometry to PeleLM, (2) achieving necessary performance of PeleLM and PeleC
on anticipated architectures, and (3) conducting sufficient demonstration calculations to exercise the requisite
capabilities. For performance metrics, the measurements that can be readily made and are relevant are
performance comparisons on a Summit node vs. a Theta node. These figures work backward from assuming
a linear extrapolation with the same percentage of peak floating point operations per second between Summit
and Frontier; as details of Frontier and development hardware become available, it will be more logical to
convert the metrics into a Frontier node. Mileposts to measure necessary progress toward achieving the
necessary capabilities are listed in Table 28.
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Figure 16: Plot of PMF problem run in PeleC.

4.2.4 Combustion-Pele: Progress on Early and Pre-Exascale Hardware

Performance on Summit

PeleC

The following plots summarize the performance of PeleC on Summit. Figure 16 shows a plot of the
premixed flame (PMF) case used for benchmarking PeleC on Summit. In all benchmark cases, the DRM19
chemistry is used, which has 21 species. Figure 17 shows strong-scaling results after the initial port of the
code to AMReX’s GPU framework. This work involved porting the original F90 kernels to C++ lambdas. A
speedup of approximately 154× is observed from the original F90 kernels to PeleC running on Summit’s GPUs.
Moving from the F90 kernels to an entirely C++ application resulted in a 2× speedup on the CPU. However,
the most performant CPU configuration is on the Eagle machine at NREL, which is an Intel Skylake-based
machine. Comparing this configuration with Summit’s GPUs results in an 18× speedup. Strong scaling
results are close to ideal on the CPU but are less desirable on the GPU due to the overhead of host to device
and vice versa data transfers currently required when running PeleC on the GPU.

Next, the SUNDIALS ODE integrator library was integrated into PeleC to try to gain more performance
on the GPU. Figure 18 demonstrates these results by comparing different ODE integrators available to PeleC.
On the CPU, DVODE is the original ODE integrator chosen because it is the best performer on the CPU.
DVODE is only available in the original F90 code. However, using the ARKStep integrator in SUNDIALS on
the GPU improves PeleC performance 6× over DVODE.

Figure 19 shows the strong-scaling performance of PeleC with an EB problem running on Summit GPUs.
EB routines are observed to be mostly insignificant in contribution to runtime. PeleC running on Summit’s
GPUs also allows users to obtain an equivalent time per time step by using 16× fewer nodes than if they
were running on the CPU nodes on Eagle. Figure 22 shows a plot of the piston bowl problem by using the
EB capability.

Figure 20 shows the weak scaling performance of PeleC on Summit. Using 4 million cells per node with
two levels of AMR, weak scaling survives up to 2048 nodes, which is a 9 billion cell problem. At 4096 nodes
and 18 billion cells, weak scaling efficiency drops off from 65 to 20 %. Therefore, weak scaling issues must be
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Figure 17: Strong scaling of PMF case with DRM19 chemistry on the Summit
and Eagle machines. There were 360 million cells with two levels of AMR. The
Intel 2018.4 compiler was used on Eagle, and built-in RK64 ODE integrator was
also used.
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Figure 18: Strong scaling of PMF case with DRM19 chemistry on the Summit
and Eagle machines after implementation of SUNDIALS ODE integrator. There
were 164 million cells with two levels of AMR. The Intel 2018.4 compiler was
used on Eagle.
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Figure 19: Strong scaling of the Piston Bowl case with DRM19 chemistry on the
Summit and Eagle machines after embedded boundaries ported to GPU. There
were 246 million cells with with levels of AMR. The Intel 2018.4 compiler was
used on Eagle.

addressed to handle the 45 billion cell challenge problem. Table 29 shows the routines that contribute most
to PeleC’s runtime in the weak-scaling study.

PeleLM

The following section discusses the performance of the PeleLM port the Summit machine at ORNL. The
first port, labeled PMF, sets up the idealized premixed flame configuration, as discussed previously for the
PeleC tests. AMR is used in the following cases noted to generate multiple levels of grid refinement centered
on the flame surface by tagging cells for refinement based on the presence of flame intermediate species. A
series of these PMF configurations is generated to enable a weak-scaling study by doubling the domain size in
each direction normal to the mean flow direction. In this way, most of the computational aspects of the setup
remain constant as the problem is scaled to larger domains. An initial case is sized to fill the available GPU
memory on a single Summit node. The larger cases are run on an increasing number of nodes proportional to
the domain size so that the loading of each node remains constant.

Two other test configurations analyzed here include flow past cylinder (FlowPC) and flame past cylinder
(FlamePC). In both cases, a cylindrical solid body is placed inside a domain with inflow-outflow boundaries
in the coordinate-aligned mean flow direction. Periodic conditions are enforced normal to the mean flow.
In the nonreacting FlowPC case, the conditions are such that the flow separates as it is diverted around
the cylinder, and time-dependent fluctuations form as the flow reattaches on the downstream side of the
solid body. The FlamePC case is similar except that a pair of flames is initialized in the fluctuating wake
of the cylinder. The initial flame is created by using a 1D auxiliary laminar flame solution computed with
CANTERA. The domain size in the direction of the cylinder axis is doubled for each simulation used to
evaluate the weak scaling capabilities of PeleLM, including EB.

Table 30 shows the wallclock time spent in the various algorithm components of PeleLM on a single node
of Summit obtained by inserting timers in the code around all aspects of the algorithm associated with each
operation, including component-specific allocations and setup work. The single-level PMF case contains
∼9.4 million cells, and the two-level case contains ∼5 million cells. Table 30 shows that the acceleration
due to the use of the GPU resources is a strong function of the numerical characteristics of each process.
Integrating the chemical reaction ODEs is nearly 60× faster when using the GPU hardware compared with a
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Figure 20: Weak scaling of the PMF case with DRM19 chemistry. There were
4,325,376 cells per node with two levels of AMR. The plot is based on the average
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of AMR, and 10 time steps.
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PMF - 1 node
function ncalls excmin excavg excmax max

fKernelSpec() 2834 8.29900 10.2300 11.6500 38.51%
FabArray::ParallelCopy() 539 2.65700 5.7030 9.9190 32.79%
PeleC::react state() 59 4.65200 5.6770 6.4570 21.34%
PeleC::advance hydro pc umdrv() 56 1.96600 2.4220 2.6680 8.82%
AsyncCpy 245 1.74300 2.1840 2.5640 8.48%
PeleC::getMOLSrcTerm() 84 1.40100 1.7110 1.8970 6.27%
AllocsInARKODE 245 0.53150 0.7002 0.8072 2.67%
FillBoundary finish() 56 0.07919 0.1886 0.3886 1.28%

PMF - 2048 nodes
function ncalls excmin excavg excmax max

FabArray::ParallelCopy() 539 13.410000 19.1100 25.9800 52.26%
fKernelSpec() 2849 7.458000 10.5000 13.1700 26.50%
PeleC::react state() 59 4.031000 5.9670 8.0800 16.26%
PeleC::advance hydro pc umdrv() 56 1.759000 2.4390 3.0040 6.04%
AsyncCpy 246 1.479000 2.2000 2.7270 5.49%
PeleC::getMOLSrcTerm() 84 1.263000 1.7160 2.0490 4.12%
DistributionMapping::LeastUsedCPUs() 10 0.273800 1.0300 1.7530 3.53%
AmrMesh::MakeNewGrids() 7 0.339700 1.4100 1.4700 2.96%

PMF - 4096 nodes
function ncalls excmin excavg excmax max

FabArray::ParallelCopy() 539 6.964000 96.3800 103.300 75.65%
fKernelSpec() 2834 7.527000 10.6500 74.680 54.72%
PeleC::react state() 59 4.133000 6.0710 20.570 15.07%
AsyncCpy 245 1.536000 2.1940 12.590 9.23%
PeleC::reflux() 12 0.001965 1.3720 10.290 7.54%
AllocsInARKODE 245 0.343800 0.9188 8.668 6.35%
PeleC::advance hydro pc umdrv() 56 1.802000 2.5460 8.336 6.11%
DistributionMapping::LeastUsedCPUs() 10 1.178000 3.7620 5.436 3.98%

Table 29: Routines contributing most to PeleC’s runtime for the PMF weak-
scaling study.

Figure 22: Plot of the piston bowl problem run in PeleC.
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distributed CPU-only implementation, whereas the other operations experience a more modest improvement.
The chemistry acceleration in the two-level case is considerably less dramatic, achieving 30× improvements,
mainly because the finer level comprises smaller boxes for which the speedup is less important. This illustrates
the conflicting performance aspects of AMR on GPU in which where the AMR algorithm objective is to add
as little additional work as possible where it is needed (small boxes in region of interests), whereas GPU
launches are efficient on large boxes. The stencil-based operations and those with particularly low-arithmetic
intensity, such as linear solvers, experience particularly low levels of acceleration. This is likely due to
their dependence on communication operations, which must move data from device to host, then across the
network, then from host to device. In some sense, the data shown here represent a best-case scenario in the
current implementation—since there is no EB geometry, the multigrid linear solvers are constructed to use
a relatively large number of coarsened levels for V-cycle relaxations. When EB is included, the number of
coarsened levels available for geometric multigrid becomes a strong function of the geometric complexity of
the domain. The iterative solvers become increasingly inefficient, and the arithmetic intensity of these parts
of the code becomes unacceptably low.

Region Time (s) Percent

MPI+OMP MPI+Cuda speedup MPI+OMP MPI+Cuda

Single-level PMF

PeleLM::advance::reactions 288.8 4.968 58.1 81.99 31.83
PeleLM::advance::diffusion 28.05 4.242 6.61 7.97 27.18
PeleLM::advance::project 14.86 1.228 12.1 4.23 7.90
PeleLM::advance::mac 1.167 0.571 2.0 0.33 3.66
PeleLM::advance::velocity adv 2.769 0.4656 5.9 0.79 3.17
PeleLM::advance::scalar adv 3.199 0.3756 8.5 0.91 2.41

Two-level PMF

PeleLM::advance::reactions 164.4 5.348 30.7 47.12 21.83
PeleLM::advance::diffusion 74.32 9.516 7.8 21.43 33.70
PeleLM::advance::project 40.44 2.323 17.4 12.08 8.33
PeleLM::advance::mac 5.81 1.591 3.66 1.67 5.63
PeleLM::advance::velocity adv 11.25 1.444 7.79 4.51 5.59
PeleLM::advance::scalar adv 3.8 0.404 9.4 1.09 1.43
PeleLM::mac sync 15.38 3.946 3.90 4.39 13.94

Table 30: Contributions of the different components of PeleLM algorithm to the
wallclock time of a single time step. Speedup is computed as the ratio between
the MPI+OMP and the MPI+Cuda times.

Figures 23–25 show the results of a weak scaling study with each data point corresponding to the wallclock
time of a single coarse time step. On both CPU and GPU, the plots show a linear loss of parallel efficiency as
we move from a single node to multiple nodes. Figure 23 shows that the GPU performances of the PMF
configuration described in Table 30 on a single node are maintained all the way to 2048 Summit nodes.

Figures 24 and 25 show the results of a three-level FlowPC case and the single-level FlamePC case,
respectively. Although the speedup obtained on GPU compared with CPU is less important than that of the
PMF case, the weak-scaling data indicate that the added constraints on the linear solver induced by using
EB do not prevent us from achieving relatively good scaling properties.

All the graphs indicate a loss of parallel efficiency as the problem is spread over more compute nodes.
To provide more detailed indications as to what is causing this loss, Figure 26 shows the weak scaling data
of PeleLM on GPU for the FlamePC test case and includes the timing of two main components of the
algorithm: chemistry and diffusion. In this case, the diffusion (i.e., linear solver) operators clearly account for
a significant amount of the loss of parallel efficiency.

Figure 27 shows the results of a strong scaling GPU study based on the PMF configuration. We adjusted
the problem definition to fully load a single node of Summit and compute the wallclock time to complete a
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Figure 23: Weak scaling of PeleLM for the single-level PMF test case.
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Figure 24: Weak scaling of PeleLM for the three-level FlowPC test case.
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Figure 25: Weak scaling of PeleLM for the single-level FlamePC test case.
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Figure 26: Weak scaling of PeleLM on GPU for the single-level FlamePC test
case.
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Figure 27: Strong scaling of PeleLM for the single-level PMF test case.

full time step of the algorithm. We then distributed the memory and storage for the same problem over twice
the number of nodes and repeated the run, continuing until there was no improvement in runtimes.

The results of Fig. 27 clearly indicate the limited ability of PeleLM to achieve good strong-scaling
performances on GPU. In particular, the performances of the diffusion rapidly deteriorates. To provide a
more detailed analysis of the bottlenecks that limit the strong scaling, the NVIDIA Nsight-System profiling
tool was used. An example of the results is presented in Fig. 28; the top image was obtained by using 16
Summit nodes, and the bottom image was obtained by using 64 Summit nodes. These images show the entire
call stack of PeleLM with the various pieces of the algorithm clearly visible and the diffusion and chemistry
highlighted. In accordance with the results of Fig. 27, the diffusion time is almost unchanged as the number
of nodes is multiplied by four and its relative contribution is thus increased.

This tool also provides quantitative measurements regarding the time spent in the different routines of
the linear solvers mostly comprising the diffusion time. A fairly constant amount of time is dedicated to
the FillBoundary operation, which is responsible for the communications of the ghost cells data between
adjacent boxes. This operation, which is key during the diffusion solves, is dominated by MPI communications
between ranks followed by HostToDevice memory copies. Because the overhead of memory copy operations
on heterogeneous CPU-GPU systems is higher than that of homogeneous CPU systems, this represents a
significant performance bottleneck for the linear solver as the granularity of the data is increased.

PeleMP

PeleMP is the multiphysics Pele code that couples with PeleC and PeleLM to accomplish the KPP stretch
goal. Currently, PeleMP contains a spray modeling functionality that is coupled with both Pele codes on
CPUs and with PeleC on GPUs.

To evaluate the performance of PeleC coupled with the PeleMP spray module, a weak scaling test was
performed on Summit. The test was a quiescent flow with uniformly distributed spray droplets that convect.
There were 8 million particles per node. Two nested additional levels of refinement were fixed in the center of
the domain.

Figure 29 shows the time per time step from the weak-scaling test performed on Summit. Additionally,
the figure lists the parallel efficiency; at 216 nodes, the parallel efficiency is 69 %. These values are consistent
with the those seen by AMReX particle tests. Obtaining runtimes at higher node counts was prevented due
to a bug when particle counts exceeded the size of an integer; this is currently being investigated.

Figure 30 shows the speedup incurred by using GPU hardware. A particle-laden Taylor-Green vortex
problem was used, and the number of particles increased. The tests were run on eight Summit nodes and
eight Cori Haswell nodes. The figure shows that switching from CPU to GPU architecture resulted in an
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Figure 28: Example of NVIDIA NSight-System output for PeleLM obtained
with 16 Summit nodes (top) and 64 Summit nodes (bottom) in the PMF strong-
scaling case.
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Figure 29: PeleMP coupled with PeleC weak-scaling performance.

almost a 100× speedup for flows without particles. The performance improvements diminished but remained
significant as particles were added to the domain. Since higher particle loads can be offset by increasing the
number of particles per parcel, significant performance issues are not expected for practical applications.

Particle creation and distribution are the known performance bottlenecks. Currently, particles are created—
either at initialization, during injection, or for ghost and virtual particles—on the CPU and are copied to the
device. This operation is expensive and can negatively impact weak-scaling performance, particularly for
problems that involve spray injection. Future work will prioritize particle creation directly on the device to
avoid this issue. Additionally, future effort will overlap particle communication with the reaction solver to
effectively hide the cost associated with the particle distribution.

The Grit particle library is another module used for the spray modeling portion of the KPP stretch goal.
Grit is a Kokkos-based performance-portable software library that serves as an alternative to the native
AMReX particle library, which is implemented to couple with a finite-difference flow solver, S3D, and with
PeleC for coupled Eulerian-Lagrangian spray simulations. We successfully used Grit to verify the governing
equations for sprays. We were particularly looking at the mass and energy conservations in the presence of
evaporation and the transport properties used in the models. We also took advantage of the simpler data
structures of Grit to expand modeling capabilities. Grit can model the impingement of sprays on surfaces,
which employs a distance-function-based algorithm to advance the sprays near the boundaries. The developed
impingement model is ready to be implemented in Pele with its embedded boundaries.

Next Steps

The next steps involve working with AMReX developers to increase the weak-scaling efficiency needed to
run the challenge problem. Other dominant time-consuming routines in Pele involve integrating ODEs for
chemistry and reactions. The Pele team will work with the SUNDIALS team to increase the performance of
reaction calculations on the GPU. A second option for integrating ODEs involves a tool called SINGE, which
can compile reaction routines into a GPU device assembly code. SINGE was originally created for CUDA,
but converting generated code to other languages will also be pursued. A profile of PeleC on the V100 for the
piston bowl problem shows that the react state() routine that calls SUNDIALS accounts for 68 % of the
runtime. This leaves getMOLSrcTerm() at 22 % left to be gained in PeleC routines directly, which the team
will pursue. For PeleLM, the linear solvers required for the diffusion step will be the focus of the next round
of optimizations. We will incorporate several new features that are currently in development to improve
performance, including working with multiple components simultaneously, and other communication-avoiding
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Figure 30: GPU/CPU performance comparison for PeleMP coupled with PeleC.

strategies. AMReX has many tunable parameters that affect the efficiency of the communication, which will
be necessary for exploring and understanding. Lastly, there are also more opportunities for asynchronous
behavior throughout the codes likely able to be exploited. For PeleMP, we will apply the aforementioned
performance optimizations and couple the spray module with PeleLM for use on GPUs. Additionally, the
spray functionality will be integrated with embedded boundary, and models for soot and radiative heat
transfer will be added to PeleMP.

4.3 ExaSMR

In the nuclear industry, small modular reactors (SMRs) offer affordable nuclear energy-based electricity
production while avoiding some of the traditional limitations that encumber large nuclear reactor designs, such
as high capital costs and long construction timelines. The current US nuclear fleet was built on a multidecade
history of experimental and operational data; for licensing, SMRs leverage that experience but depend on
M&S for design optimization. However, industry-class computing is based on heavily parameterized, coarse
models of reactor phenomena. This provides a compelling opportunity for high-resolution calculations that
can benchmark and influence these engineering-class simulations.

The Consortium for the Advanced Simulation of Light Water Reactors DOE energy innovation hub has
demonstrated the value of HPC to the nuclear industry by deploying highly accurate MC neutronics on
DOE leadership-class platforms. The datasets generated by these first-of-a-kind simulations were used to
validate the start-up calculations of the new Westinghouse Electric Company AP1000 reactor. Although this
represented a significant advance, petascale computing and application limitations restrict the calculations to
reactor start-up conditions. In contrast, the objective in the exascale SMR project ExaSMR is to provide
benchmarks for multicycle operational design parameters for SMRs by 2025.

The ExaSMR approach is to integrate MC neutronics and CFD—the most accurate numerical methods
available for operational reactor modeling—for efficient execution on exascale systems. ExaSMR builds on a
base of applications that have demonstrated high efficiency and excellent scaling on current petascale leadership-
computing levels. The ExaSMR effort will provide value to nuclear fuel vendors and the broader nuclear
community through the generation of highly detailed benchmark datasets of operational nuclear reactors.
The MC neutronics method presents significant challenges related to the random access of unordered data on
hierarchical memory architectures; CFD presents the challenge of achieving high floating-point efficiency on
sparse linear algebra problems. Furthermore, the MC particle transport and CFD implementations developed
will complement other projects in the DOE that are based on similar methods. Requirements for these
numerical motifs will also help to inform choices in hardware, runtime systems, and programming models for
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exascale systems.

4.3.1 ExaSMR: Science Challenge Problem Description

The ExaSMR challenge problem is the simulation of a representative NuScale SMR core by coupling
continuous-energy MC neutronics with CFD. Features of the problem include the following:

• representative model of the complete in-vessel coolant loop,

• hybrid LES/RANS turbulence model or RANS plus an LES-informed momentum source for treatment
of mixing vanes, and

• pin-resolved spatial fission power and reaction rate tallies.

Details on the challenge problem specification are given in Table 31.
The simulation objective is to calculate reactor start-up conditions that demonstrate the initiation of

natural coolant flow circulation through the reactor core and primary heat exchanger. The driver application,
ENRICO, performs inline coupling of the Nek5000 CFD module with MC through a common API that
supports two MC modules: Shift, which targets the Frontier architecture at ORNL, and OpenMC, which
targets the Aurora system at ANL.

Minimum neutronics requirements for the coupled simulation are as follows:

• full-core representative SMR model containing 37 assemblies with 17× 17 pins per assembly and 264
fuel pins per assembly item,

• depleted fuel compositions containing O(150) nuclides per material,

• 1010 neutrons per eigenvalue iteration,

• pin-resolved reaction rate with a single radial tally region and 20 axial levels, and

• six macroscopic nuclide-independent reaction rate tallies.

Minimum CFD requirements for the coupled simulation are as follows:

• assembly bundle mesh models with momentum sources from a resolved CFD calculation on a represen-
tative spacer grid and

• full-core mesh 200× 106 elements and 70× 109 DOF.

4.3.2 ExaSMR: KPP Stretch Goal

The ExaSMR stretch goal is to improve the fidelity of the MC and CFD models. For the MC problem,
this will mean increasing the number of radial rings per fuel pin tally region from one to three and tallying
nuclide-specific microscopic reaction rates instead of nuclide-independent reaction rates. With over 150
nuclides per fuel material, this will result in a substantially increased memory footprint and add significant
computational cost. Tallying microscopic reaction rates will demonstrate the ability to perform isotopic
depletion calculations. For the CFD problem, the stretch goal is to replace the modeling of mixing vanes
by using an LES-informed momentum source with an explicit representation of mixing vanes with a hybrid
LES/RANS turbulence model. This addition dramatically increases the number of spatial DOF needed to
resolve the problem and places more stringent requirements on the time steps needed to maintain numerical
stability.

Exascale Computing Project (ECP) 66 ECP-U-AD-RPT 2021 00208



Table 31: ExaSMR challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Eigenvalue form of the linear Boltzmann transport equation with
quasistatic nuclide depletion neutronics coupled to hybrid RANS/LES
(or equivalent accuracy model), incompressible CFD with Boussinesq
approximation, or low-Mach incompressible CFD with nonzero thermal
divergence.

Numerical approach,
algorithms

The neutronics solver is an MC particle transport; the CFD solver is a
spectral finite element on unstructured grids. Physics are coupled by
using a quasistatic approximation.

Simulation details: problem
size, complexity, geometry, and
so on

The neutronics model has a minimum of 200,000 tally bins and 10
billion particle histories per eigenvalue iteration. The CFD model has a
minimum of 200 million elements and 70 billion DOF.

Demonstration calculation
requirements

Run 30 eigenvalue cycles (10 inactive and 20 active) to estimate the MC
particle tracking rate and 1000 time steps toward steady-state
convergence in the CFD solve. Only one nonlinear (Picard) iteration is
required. To facilitate comparison with the baseline measurement, the
neutronics portion of this calculation requires six macroscopic reaction
rates and one radial region per pin.

Resource requirements to run
demonstration calculation

2 h at full system.

4.3.3 ExaSMR: Figure of Merit

The coupled simulation FOM for ExaSMR is a harmonic weighted average of the neutronics and CFD
performance,

FOM =
2

FOM−1
MC + FOM−1

CFD

, (4)

where each physics FOM is a ratio of a measured work rate to the baseline work rate, that is,

FOMMC =
Wmeasured

MC

W baseline
MC

, (5)

FOMCFD =
Wmeasured

CFD

W baseline
CFD

. (6)

The individual physics work rates are given by

WMC =
neutrons

wallclock time
, (7)

WCFD =
degrees-of-freedom

wallclock time
. (8)

The MC work rate is computed using only the active cycle particle tracking rate, which is more computationally
intensive and typically occupies most of MC runtime. If ensemble averaging is used to perform the CFD
calculation, the number of DOF used in the work rate measurement includes the sum over all ensembles. The
demonstration problem to evaluate the final FOM value will be a coupled MC-CFD calculation with the
relevant work rates for the physics components extracted from this calculation. This is done to facilitate
comparison with the baseline calculations, which were performed by running each code independently due to
the lack of a coupled physics capability during the baseline measurements.

The current baseline measurements are:

• WMC = 10.4 million neutrons per second (Mn/s) on Titan and
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• WCFD = 3.0 billion DOF per second on Titan.

FOM Update

Updated FOM measurements were performed on Summit. Because the GPU-enabled versions of the
physics codes are not yet supported in coupled physics simulations within ExaSMR, the work rates were
computed by executing the MC and CFD codes independently. An MC simulation of a full SMR core—the
same one used to compute the baseline work rate on Titan—was performed on 4096 Summit nodes with
24.6 billion neutrons per eigenvalue cycles (1 million neutrons per GPU). This simulation achieved a particle
tracking rate of WMC = 242 Mn/s, corresponding to an FOM of 23.3. Extrapolating to the entire 4608
Summit nodes results in a projected FOM of 26.2.

The NekRS code was used to perform a simulation of a full SMR core. The computational model included
174 million spatial elements of degree 7, corresponding to 59.7B total DOF. Executing on 3620 Summit nodes,
NekRS achieved a work rate of WCFD = 506 billion DOF per second and an FOM of 168.7. Extrapolating
this value to the full Summit machine corresponds to a projected FOM of 214.7. A calculation for the same
computational model on the entire machine resulted in a work rate of WCFD = 494 billion DOF per second
and an FOM value of 164.7. This lower value is because the computational model did not have enough DOF
to fully saturate the machine; executing a larger problem on the full machine is expected to yield a work rate
closer to the extrapolated work rate for the 3620 node case.

For these Summit simulations, the current single-physics achieved FOM values are:

• FOMSummit
MC = 23.3 and

• FOMSummit
CFD = 168.7.

This equates to a combined ExaSMR FOM of:

FOMSummit
achieved = 40.9 . (9)

Using the work rates extrapolated to the full Summit machines gives:

FOMSummit
extrapolated = 46.7 . (10)

4.3.4 ExaSMR: Progress on Early and Pre-Exascale Hardware

Performance on Summit

The Shift and NekRS codes have been heavily used on NVIDIA GPUs, particularly on Summit. As
illustrated in Fig. 31, MC transport exhibits very favorable weak scaling behavior when the number of
particles per GPU remains constant. This trend holds equally well for CPU and GPU implementations.
Thus, if a single GPU can be used effectively, it is very likely that an entire supercomputer can be used.
Because of the significant amount of branching and indirection, MC transport is inevitably bound by memory
latency rather than bandwidth or floating point operations. Furthermore, because the parallel regions in
transport codes must implement complex physics models, many kernels require a significant number of
registers (thread-local storage). This register pressure results in reduced occupancy on the device, limiting
the ability of the GPU to hide the latency of memory accesses via context switching. Several algorithmic
modifications were investigated in a CUDA solver within the Shift code to reduce thread divergence and the
number of registers used per kernel, thus increasing occupancy. The impact of these algorithmic modifications
in Shift is demonstrated in Table 32.

Development activities within the NekRS code were conducted in close collaboration with the CEED project.
NekRS supports execution on a variety of computing platforms by using the OCCA performance portability
model. OCCA supports a variety of back ends, including CUDA, OpenMP, and OpenCL. Algorithmic
optimizations for fluid flow problems in NekRS have included the introduction of new preconditioners,
including reduced-precision approaches, as well as runtime-optimized GPU-aware gather/scatter and projection
operations. Figures 32 and 33 demonstrate the weak- and strong-scaling behavior of NekRS, respectively, on
problems related to the ExaSMR challenge problem. The weak-scaling efficiency from 87 nodes to the full
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Figure 31: Shift weak scaling on Summit. Parallel efficiency at 1024 nodes is
approximately 93%.

Table 32: Active cycle particle tracking rate (103 n/s) on K40 GPU at different
occupancies for fresh fuel SMR core during active cycles.

Algorithm
Occupancy (%) History-based Event-based Flattened event-based

12.5 3.7 3.4 8.2
25.0 – 5.8 13.3
37.5 – – 14.5
50.0 – – 16.9
62.5 – – 18.0
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Figure 32: NekRS weak scaling on Summit. Parallel efficiency at 4608 nodes is
slightly above 80 %.

machine remains above 80 %, and the strong scaling from 1810 to 4608 nodes is approximately 70 %. The
degradation in strong scaling behavior beyond around 3620 nodes is due to an insufficient amount of parallel
work to fully saturate all the GPUs on Summit. Much higher efficiency is expected to be achieved on a
problem with more DOF.

Next Steps

The primary near-term effort for the ExaSMR project is to complete the initial ports of each physics
code to its respective pre-exascale hardware. This process will enable an initial performance assessment on
problems closely related to the ExaSMR challenge problem on the most representative available hardware
and allow any components or kernels that are at an elevated risk to be identified with respect to KPP-1 FOM
targets. Development and optimization efforts can then focus on the most critical areas. The completion
of the code porting is expected to take significant time because it will likely require close interaction with
hardware vendors and the potential resolution of bugs or issues in the vendor software components.

Additional effort will also target the continued development of the ENRICO multiphysics driver that
will be used to performed the coupled-physics simulations necessary for ExaSMR’s challenge problem. In
particular, emphasis will be placed on enabling the NekRS and Shift GPU capabilities, allowing the first
coupled-physics calculations with MC and CFD using GPU hardware. This work will result in the first FOM
measurement from a multiphysics simulation.

4.4 MFIX-Exa

Carbon capture and storage (CCS) technologies (e.g., oxy-fuel combustion, chemical looping combustion,
post-combustion capture systems) offer the most promising approaches for reducing CO2 emissions from fossil
fuel power plants. The large-scale commercial deployment of CO2 capture technologies requires understanding
of how to scale laboratory designs of multiphase flow reactors to industrial sizes. However, the direct scale-up
of such reactors is unreliable, and the current approach requires building and testing physical systems at
increasingly larger intermediate scales. The cost in dollars and development time of having to build and
extensively test systems at multiple intermediate scales is prohibitive. Developing high-fidelity computational
tools capable of simulating such systems to enable the design and optimization of emerging CCS technologies
is critically important for controlling costs and reducing the risk of designs that do not meet performance
standards. The development of such tools and the simulations required are impossible without exascale
computations. This work specifically targets the scale-up of chemical looping reactors (CLRs) by using NETL’s
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Figure 33: NekRS strong scaling on Summit.

50 kW CLR as a basis through the creation of MFIX-Exa, a scalable computational fluid dynamics-discrete
element method model (CFD-DEM) code, which is the next generation of the highly successful NETL-based
MFIX code.

CFD-DEM is an approach that allows individual particles (discrete element method (DEM) portion) to be
tracked within a continuum fluid phase (CFD portion). To date, the focus of existing MFIX CFD-DEM efforts
has been on validating and developing physical models in the context of a relatively basic computational
framework. MFIX-Exa will integrate expertise in HPC directly with expertise in multiphase modeling and
will outperform the existing MFIX by orders of magnitude.

4.4.1 MFIX-Exa: Science Challenge Problem Description

The challenge problem is a CFD-DEM simulation of NETL’s 50 kW CLR, which contains 5 billion particles
for a sufficiently long physical time so that exit gas compositions reach a pseudo-stationary state, enabling
the evaluation of reactor performance. In chemical looping combustion, multiple reactors are used to separate
combustion into two distinct processes: reduction and oxidation. In the fuel reactor, a solid oxygen carrier
supplies oxygen for combustion and is reduced by the fuel. The reduced oxygen carrier is sent to the air
reactor where it is regenerated to its oxidized state. The air reactor produces a hot, spent air stream that is
used to create steam to drive a turbine for power generation. Then, the oxygen carrier is returned to the fuel
reactor, restarting the reduction-oxidation cycle. The challenge problem requires the full-loop CLR geometry
to be represented, covering all five flow regimes, including interphase momentum, mass, and energy transfer.
The MFIX-Exa code is an exascale-enhanced version of the classic MFIX application that improves fidelity by
employing DEM instead of the traditional low-order models. Challenge problem details are given in Table 33.

4.4.2 MFIX-Exa: KPP Stretch Goal

The stretch goal is to run the challenge problem simulation until the gas concentrations at the fuel-reactor
exit reach a stationary state, a simulation-time that cannot be determined a priori. The initial conditions
for the simulation will be determined from lower order simulations (“bootstrapping approach”) to better
approximate the solids inventories in the three main components of the CLR: the air reactor, fuel reactor,
and loop seal. The cross section-averaged CO2 mass fraction at the exit of the fuel reactor will be plotted as
a function of time. The plot is expected to show a rapid change in the CO2 mass fraction during an initial
period. Subsequently, the CO2 mass fraction is expected to fluctuate around a steady mean value. After
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Table 33: MFIX-Exa challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and associated
models

Low-Mach number fluid flow with multi-species, reactive transport coupled to
discrete solid particle transport.

Numerical approach, algorithms The CFD-DEM numerical method is based on MFIX-DEM. The continuity and
momentum balance equations are solved for the gas phase, and the equations account
for the volume occupied by particles and the momentum transfer with the particles.
All the particles are tracked by solving the kinematic equation and the linear and
angular momentum equations. The particle-particle collisions are modeled by using a
soft-sphere approach, and the contact forces are modeled by using a
spring-dashpot-slider model.
The numerical accuracy of the code will be periodically established by conducting
verification tests, such as those described in the milestone report
ECP-MFIX-Exa-2017-12, which demonstrate a high degree of numerical accuracy.
The numerical parameters and convergence criterion used in the verification tests will
also be used for the challenge problem. Model validation is outside the scope of the
current project and will not be conducted.

Simulation details: problem size,
complexity, geometry, and so on

Geometry: The system geometry contains a fuel reactor, air reactor, cyclone, and
loop seal. Components are connected via piping with conditions ranging from a
dense granular flow (fuel reactor to air-reactor) to dilute transport (air-reactor to
cyclone). The approximate dimensions of the fully assembled reactor are 4.2 m high,
1.1 m wide, and 0.22 m deep.
Grid: A uniform grid size of 1 mm will be used for the entire domain. Because of the
CLR’s torus-like shape, it is anticipated that three-fourths of the domain will not
contain active computational cells and thus will be removed to reduce memory usage.
The domain can be fully covered by roughly 40,000 individual grids of 323 cells each;
if only one-fourth of the domain is relevant, one should need closer to 10,000 grids or
a total of roughly 330 million cells.
Fluid: The fluid will be modeled as a mixture of methane (CH4), hydrogen (H2),
steam (H2O), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), and
nitrogen (N2). There will be 12 unknowns per grid cell: velocity (3), pressure (1),
temperature (1), and composition (7). Fluid density will be evaluated as function of
temperature, pressure, and composition. Fluid volume fraction (void fraction) is
computed from particle location and volume data by using a compact support kernel.
Particles: The solids oxygen carrier will be modeled with approximately 5 billion
monodisperse spherical particles with a 200µm diameter. Particles will be treated as
a mixture of hematite (Fe2O3) and Wüstite (FeO). There will be 12 unknowns per
particle: position (3), translational and rotational velocities (6), temperature, and
composition (3).
The main chemical reactions:

• air reactor: 2FeO + 1
2

O2 → Fe2O3 and

• fuel Reactor: 4Fe2O3 + CH4 → 8FeO + CO2 + 2H2O.

Demonstration calculation
requirements

Initial conditions: Minimizing the initial transient time from the guessed initial
condition to the fully developed condition is a considerable challenge in reacting
CFD-DEM. Lower fidelity and/or coarser simulations will be used to establish
reasonable initial conditions for the challenge problem, including fluid and particle
flow patterns, temperatures, and chemical compositions. The full science simulation
will be run for a sufficiently long physical time so that exit gas compositions reach a
stationary state, enabling the evaluation of reactor performance.
Boundary conditions: A mixture of CH4 and N2 will be used to fluidize the fuel
reactor, and a mixture of O2 and N2 will be used to fluidize the air reactor. N2 will
be used to fluidize the loop-seal and move gas in the standpipe and L-valve to
facilitate solids movement. An operating temperature of 1100 K is targeted for the
system, and outlets in the cyclone, loop seal, and fuel reactor will vent to
atmospheric pressure. No heat loss through the reactor walls will be considered.

Resource requirements to run
demonstration calculation

Using the approach developed in FY21 to bootstrap physically relevant initial
conditions, the team anticipates only needing to take 10 time steps to approximate
the time necessary for a full science simulation at realistic operating conditions in
which the particle distribution throughout the CLR is relatively constant in time.
The time required for such simulations, estimated by extrapolating the time to
solution for existing simulations, will be 2 h at full system.
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disregarding the initial period, the CO2 mass fraction will be time-averaged over successive intervals equal
to the gas residence time in the fuel reactor. If a few successive time-averaged values have less than a 5 %
difference between them, then the simulation will be considered to have reached a stationary state, and the
stretch goal will be considered to have been achieved.

4.4.3 MFIX-Exa: Capability Plan

The primary technical capabilities needed to execute the challenge problem include the ability to:

1. solve the coupled mass, momentum, and energy equations for the fluid and particles in the full-loop
reactor geometry;

2. bootstrap the initial conditions from a lower resolution run to the final high-resolution geometry; and

3. run the compute-intensive kernels in the MFIX-Exa code on the GPU accelerators.

To date, the team has the ability to do the following.

1. Solve the coupled momentum equations for the fluid and particles in a simplified approximation to the
full-loop reactor geometry: The team replaced the original SIMPLE algorithm with an approximate
projection method and replaced the original BiCGStab linear solver with geometric multigrid supplied
by AMReX. A novel level set method for efficiently calculating particle-wall collisions was developed
and implemented.

2. Run the MFIX-Exa code at various scales and resolutions: The initial 1:1 mapping of grids to MPI ranks
was replaced by a more general AMReX-based gridding strategy that allows much greater flexibility in
grid creation and removal.

3. Off-load several key particle-intensive kernels from CPUs to GPUs: The original MFIX code could not
have been extended to GPUs.

The development schedule through FY23 is as follows.

• FY20:

– Implement an MFIX-PIC solids model to be used as the lower resolution solids model to be
deployed in the initial condition bootstrapping approach.

– Incorporate heat and mass transfer between particles and fluid due to chemical reactions for both
DEM and particle-in-cell (PIC) solids models.

• FY21:

– Incorporate an initial condition bootstrapping approach by using the PIC solids model and develop
a methodology to switch between the two solids models.

– Incorporate a generalized geometry generation approach to allow greater flexibility in modifying
the reactor geometry to account for changes in the physical system.

• FY22:

– Assess a mixed solids model for a dense granular region as a risk mitigation strategy. If the mixed
solids model is successful, then integrate it into the MFIX-Exa algorithm.

– Optimize on the prototype for target architectures (e.g., replacing CUDA regions if CUDA is
unavailable on the target machine).

• FY23:

– Optimize for target architecture, including fine-tuning the load balancing strategy to reflect the
realities of the new architecture.
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Table 34: Inclusive time and percent of the total runtime for particle kernels
obtained from an MFIX-Exa single GPU analysis on Summit.

Kernel name Time Percent

calc_particle_collisions() 49.12 29.84
update_neighbors() (AMReX routines) 23.34 14.18
update_particle_velocity_and_position() 13.43 8.16
update_particle_species() 5.52 3.35
update_particle_enthalpy() 3.01 1.83
substep_init() 1.09 0.66
calc_wall_collisions() 0.91 0.55

4.4.4 MFIX-Exa: Progress on Early and Pre-Exascale Hardware

Performance on Summit

A single GPU analysis and weak-scaling study were executed to assess the performance of MFIX-Exa on
Summit. For both tests, the fluid was treated as a multicomponent ideal gas that comprises seven species:
CH4, H2, H2O, CO, CO2, O2, and N2. Particles were treated as a mixture of Fe2O3 and FeO. Density,
enthalpy, and species mass were advected for both the fluid and particles, and an open-system constraint was
used so that the evolution of species densities and enthalpy is consistent with the equation of state (EOS).
Particles are assumed to be incompressible with fixed volumes. The fluid and particles were fully coupled
though interphase momentum, energy, and mass transfer. Three chemical reactions with constant reaction
rates were used to represent the reduction of Fe2O3 to FeO:

• Fe2O3 + H2 → 2FeO + 2H2O,

• Fe2O3 + CO → 2FeO + CO2, and

• 4Fe2O3 + CH4 → 8FeO + CO2 + 2H2O.

For the single GPU test, a cylindrical geometry was used that is similar in aspect ratio to the CLR
fuel reactor geometry. The domain was decomposed with a 256× 64× 64 fluid mesh with two-thirds of the
computational cells being covered (i.e., excluded from the solution because they are “outside” the embedded
boundary). The fluid was advanced for 50 fluid time steps with 50 sub-cycles per fluid step (2500 total steps)
used to evolve the particles. The fluid advance accounted for 37 % of the total solve time with most of the
time spent in the linear solves for the nodal and MAC projections. The time spent coupling the fluid and
particle solvers (e.g., deposition of particle volume, calculation and deposition of interphase transfer terms)
accounted for only 3 % of the total runtime. Lastly, the particle advance consumed the remaining 60 % of
total runtime. The inclusive time and percent of total runtime for particle kernels is provided in Table 34
where the particle-particle collision detection/force calculation and an update of particle velocity and position
are shown as the most expensive MFIX-Exa kernels. A roofline analysis, shown in Fig. 34, indicates that
the particle kernels are memory-bound, which explains why the update for position and velocity consumes a
significant portion of the total runtime. Presently, we are investigating changes to the particle data structure
(e.g., converting from an array-of-structures to a structure-of-arrays) to improve memory access.

A weak-scaling study was conducted by using a simple box geometry to ensure an even load distribution.
Specifically, a doubly periodic box with a mass inflow and pressure outflow was constructed. The fluid mesh
size was set to 2.5× the particle diameter, and eight particles were placed in each cell. The domain was
decomposed into uniform grids of 643 fluid cells and approximately 2.1 million particles. There was a 1:1
grid-to-MPI mapping, and the problem is weak-scaled in size by successively doubling the number of grids in
each direction. The fluid and particle compositions were as previously described. The fluid was advanced for
10 fluid time steps with 50 particle sub-cycles per fluid step (500 steps total). The total time for the fluid
advance, particle advance, and coupling was averaged overall all 10 steps.
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Figure 34: Roofline plot of key MFIX-Exa particle kernels.

The scaling efficiency and average time per step are shown in Fig. 35. As with the single GPU study, most
of the fluid solve is spent in linear solves for the nodal and MAC projections. The study was repeated with
HYPRE as the multigrid bottom solve; however, no improvement in performance was observed. The particle
solve showed little reduction in efficiency after 32 GPU cases, at which point the problem is sufficiently
large so that no grid has the same MPI rank for any of the six faces. Unlike the single GPU study, the
particle solve is dominated (∼90 %) by updating neighbor particles. Specifically, the particle-particle collision
algorithm requires that the position and velocity of “ghosted” particles from adjacent grids be updated after
each particle sub-cycle, which is significantly more costly than calculating collisions. Lastly, the efficiency of
the fluid-particle coupling follows the efficiency of the fluid solve. However, the computing accounts for less
than 4 % of the total time step.

Finally, a variation on the weak scaling was conducted to compare CPU and GPU performance. Shown in
Fig. 36, the GPU version is approximately 1.8× faster than the CPU version at the largest Summit node
count.

Next Steps

We are currently investigating changes to the particle data structure to obtain better performance on
GPU. Specifically, we currently use an array of structures to store particle data, whereas a structure of
arrays might allow for better cache reuse. Along these lines, we are looking at sorting particle neighbor lists
and different loop constructs (e.g., loop over collisions as opposed to looping over particles) to reduce data
movement.

4.5 WDMApp

The Whole Device Model Application project (WDMApp) strives to develop a high-fidelity model of
magnetically confined fusion plasmas, which is urgently needed to plan experiments on ITER [24] and
optimize the design of future next-step fusion facilities. These devices will operate in high-fusion-gain
physics regimes not achieved by any of the current or past experiments, making advanced and predictive
numerical simulation the best tool for the task. WDMApp is focused on building the main driver and
coupling framework for the more complete Whole Device Model (WDM), the ultimate goal being to complete
a comprehensive computational suite that will include all the important physics components required to
simulate a magnetically confined fusion reactor. The main driver for the WDM will be coupling two advanced
and highly scalable gyrokinetic codes, XGC and GENE. XGC is a PIC code optimized for the treating
the edge plasma, and GENE is a continuum code optimized for the core plasma. WDMApp aims to take
advantage of the complementary nature of these two applications to build the most advanced and efficient
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(a) (b)

Figure 35: The scaling efficiency and average time per step for the MFIX-Exa
weak scaling study on Summit GPUs.

Figure 36: MFIX-Exa comparison of CPU and GPU weak scalings.
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Table 35: WDMApp challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

5D gyrokinetic plasma model with Coulomb collisional kernel.

Numerical approach,
algorithms

Structured grid, continuum solver with spectral and finite-difference
spatial schemes in the plasma core coupled to unstructured grid,
particle-in-cell solver with finite element and finite-difference schemes in
the edge region.

Simulation details: problem
size, complexity, geometry

Minimum problem size of 100 million solver vertices covering the whole
core and edge region. Minimum time step of one-tenth the ion sound
wave period. Minimum number of particles is 1 trillion in XGC.

Demonstration calculation
requirements

2500 time steps.

Resource requirements to run
demonstration calculation

3 h to run 2500 time steps on 100% of exascale computer.

whole device kinetic transport kernel for the WDM. One main thrust of the project is the coupling framework
End-to-End Framework for Fusion Integrated Simulation (EFFIS) 2.0, which will be further developed
for the exascale and optimized for coupling most of the physics modules that will be incorporated in the
WDM. The current MPI+X implemented in the main GENE and XGC applications will be enhanced with
communication-avoiding methods, task-based parallelism, in situ analysis with resources for load optimization
workflows, and deep memory hierarchy-aware algorithms.Alternate code-couplings will also be considered for
risk mitigation (i.e., the PIC code GEM in the core region).

The resulting exascale application will be unique in its computational capabilities and could have a
transformational impact on fusion science, such as studying a much larger and more realistic range of
dimensionless plasma parameters than ever before and the rich spectrum of kinetic micro-instabilities that
control the quality of energy confinement in a toroidal plasma—including tokamaks and stellarators—with the
core and the edge plasma strongly coupled at a fundamental kinetic level based on the gyrokinetic equations.

4.5.1 WDMApp: Science Challenge Problem Description

The exascale science challenge problem is the high-fidelity simulation of whole-device burning plasmas
applicable to a high-confinement (“H-mode”) advanced tokamak regime, specifically an ITER steady-state
plasma that aims to attain a tenfold energy gain. The physics objective is to predict two of the most important
indicators for energy confinement in the H-mode: the plasma pressure “pedestal” height and shape. Realizing
the H-mode with high edge plasma pressure and mild pedestal gradient is critical to the performance and
success of ITER. Fusion burn efficiency is virtually determined by the height of the pressure pedestal at the
edge. The team’s strategy will be to use WDMApp, which is focused on coupling the continuum code GENE
and/or GEM in the core region and the PIC code XGC at the edge.

The targeted minimum requirement for accuracy is 5% relative error. Because of the intrinsically turbulent
nature of some important fusion plasma observables, higher accuracy is neither cost-effective nor realistic
in most experiments or simulations. The computational hardware size target will be 100% of the exascale
platforms on which the FOM will be compared against the baseline FOM established on 50% of Titan. The
minimum physics problem size will be 100 million solver vertices, and the minimal time step will be one-tenth
of the ion sound wave period. More detailed information is provided in Table 35 on the minimum criteria for
the FOM runs.

4.5.2 WDMApp: KPP Stretch Goal

The stretch goal for the project is to carry out core-edge coupled electrostatic turbulence simulations to model
gyro-kinetic ions and drift-kinetic electrons in ITER geometry on an exascale facility. In addition to the
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FOM enhancement produced by the hardware upgrade to the exascale facility, the KPP stretch goal would
realize substantial FOM achievement through the algorithmic improvement of coupling two gyro-kinetic codes
mostly by exchanging fluid moment data augmented by the infrequent exchange of probability distribution
function (PDF) data. Further improvements are expected from an asynchronous electron push in GPU and
improvements in code-coupling efficiency and load balancing.

4.5.3 WDMApp: Figure of Merit

The science challenge problem for WDMApp pertains to a realistic ITER plasma. The FOM is defined as:

FOM =
NmNtNp

wallclock time
× 10−10 , (11)

where Nm is the number of solver vertices, Nt is the number of time steps in specified wallclock time (60 s),
and Np is the number of particles per mesh vertex in the edge region. The baseline FOM is 1.76 on Titan
based on a PDF data exchange.

FOM Update

Current FOM measurements on GENE-XGC were calculated on Summit with kinetic electrons under the
following conditions.

• The circular model-plasma run was performed on 518 nodes, 512 of which were used for XGC and six
of which were used for GENE with XGC’s GPU capabilities enabled.

• XGC was run with six MPI processes per node, one GPU per MPI process, and 28 OpenMP threads
per MPI process. GENE was run with 42 MPI processes per node.

• The number of whole domain solver vertices used was Nm = 9,640,480, the number of particles in XGC
per vertex was Np = 8922, and the wall-time per time step was 61.4 s.

These numbers give a value of FOM = 8.4. Extrapolating to full Summit (4608 nodes) gives FOM = 74.8.
Using the baseline value of 1.76 from full Titan, the updated GENE-XGC FOM extrapolated to full Summit
is 42.5.

We have also performed FOM updates for GEM-XGC with kinetic electrons and the following conditions.

• A realistic DIII-D plasma run was performed on 1056 nodes, 960 of which were used for XGC and 96 of
which were used for GEM.

• XGC and GEM were both run with six MPI processes per node, one GPU per MPI process, and 28
OpenMP threads per MPI process.

• The number of whole domain vertices used was Nm = 12,072,384, the number of particles per vertex
was Np = 10,020 for XGC (Np = 512 for GEM), and the wall time per time step was 51.1 s.

Using these numbers, the FOM for GEM-XGC extrapolated to full Summit is 35.1.

4.5.4 WDMApp: Progress on Early and Pre-Exascale Hardware

Performance on Summit

The XGC code base was converted to C++ and was fully integrated with Cabana/Kokkos, which allows
more efficient GPU porting. The following kernels were converted to C++ and ported to GPUs:

• electron push, converted to C++, used Cabana/Kokkos;

• ion and electron scatters, partially converted to C++, used Cabana/Kokkos; and

• collisions, converted to C++, used Kokkos.

The C++ and Cabana/Kokkos conversion enabled more pre-exascale performance gains on Summit.
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Figure 37: Cabana/Kokkos electron push on Summit.

• Whole code (CPU + GPU) is 12 % faster than 1 year ago for the entire production code.

• The C++ Cabana/Kokkos electron push is 28 % faster than the Fortran Cabana/Kokkos electron push
in V100.

The performance of the Cabana/Kokkos electron push is shown in Fig. 37.
The GENE and GEM plasma core codes were also ported and tested on Summit. Figure 38 shows a weak

scaling on Summit and compares performance on CPUs and GPUs. We observed a performance degradation
as the number of nodes increases so that the speedup goes from 15 to 6.2× as the number of nodes varies from
1 to 512 (6–3072 GPUs). However, because GENE will be using <40 nodes but XGC uses >4000 Summit
nodes, the speedup degradation at high node count should not be an issue.

GEM performance was also measured on Summit. As shown in Fig. 39, GEM weak-scales well to 1024
Summit nodes. This performance is sufficient for a coupled GEM-XGC simulation in which GEM occupies
∼10 % of the total nodes.

4.6 WarpX

Particle accelerators are a vital part of the DOE-supported infrastructure of discovery science and have a
broad and critical range of applications in industry, security, energy, the environment, and medicine. Particle
accelerators are used in many areas of fundamental research—such as elementary physics, nuclear physics,
material science, chemistry, and biology—and even play a role in astrophysics and cosmology. Thirty percent
of all Nobel prizes in physics since 1939—and four of the last 14 Nobel prizes in chemistry—have been
enabled by particle accelerators. Beyond fundamental research, the investments in accelerator technologies
for discovery science have led to the development of tens of thousands of particle accelerators for various
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Figure 38: Weak scaling comparison of GENE CPU/GPU on Summit.

Figure 39: Weak-scaling comparison of GEM on Summit.
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applications that impact lives, such as sterilizing food and toxic waste, implanting ions in semiconductors,
treating cancer, and developing new drugs.

For most applications, the size and cost of the accelerators are limiting factors that can significantly
impact the funding of projects or the adoption of solutions. Among the candidate new technologies for
compact accelerators, the advent of plasma-based particle accelerators stands apart as a prime game-changing
technology. The development of plasma-based accelerators depends critically on high-performance, high-
fidelity modeling to capture the full complexity of the acceleration processes that develop over a large range
of space and timescales. However, these simulations are extremely computationally intensive due to the need
to resolve the evolution of a driver (laser or particle beam) and an accelerated beam into a structure that is
orders of magnitude longer and wider than the accelerated beam. Studies of various effects—including the
injection, emittance transport, beam loading, tailoring of the plasma channel, and tolerance to nonideal effects
(e.g., jitter, asymmetries) that are needed for the design of high-energy colliders—will necessitate a series
of tens or hundreds of runs. This will require speedups that are orders of magnitude over the present state
of the art, which will be obtained by combining the power of exascale computing with the most advanced
computational techniques. This project will combine the PIC code Warp technology and the AMR framework
AMReX (§ 8.4) into a new code (WarpX) and port the software to exascale platforms. WarpX will incorporate
the most advanced algorithms that have been developed and validated by the lead teams, including the
optimal Lorentz boosted frame approach, scalable spectral electromagnetic solvers, and mitigation methods
for the numerical Cherenkov instability. To ensure speed and scalability, WarpX will take advantage of the
latest features that the team has developed in portable vectorization algorithms, hierarchical parallelism,
and GPU programming, as well as AMReX’s dynamic gridding capabilities, to load balance the combined
computational work associated with the particles and mesh.

On exascale supercomputers, the new software will enable the exploration of outstanding questions in
the physics of the transport and acceleration of particle beams in long chains of plasma channels, such as
beam quality preservation, hosing, and beam-breakup instabilities. These new breeds of virtual experiments,
which are impossible with present technologies, will bring huge savings in research and lead to the design of a
plasma-based collider and even bigger savings by enabling the characterization of the accelerator before it is
built.

4.6.1 WarpX: Science Challenge Problem Description

The exascale challenge problem is the modeling of a chain of tens of plasma acceleration stages. Realizing
such an ambitious target is essential for the longer range goal of designing a single- or multi-teraelectron
volt electron-positron high-energy collider based on plasma acceleration technology. The WarpX application
uses AMReX for AMR and employs PIC methodology to solve the dynamic Maxwell equations to model the
accelerator system.

The minimum completion criteria are designed to demonstrate that the project is on track toward modeling
multi-teraelectron volt high-energy physics colliders based on tens to hundreds of plasma-based accelerator
stages. The main goal is to enable the modeling of an increasing number of consecutive stages to reach higher
final energy and to increase the precision of the simulations by performing simulations at higher resolutions
in a reasonable clock time. The goals are as follows:

• achieve a total plasma accelerator energy gain of at least 100 GeV by using five accelerator stages or
more and

• achieve a maximum wallclock time that is the same as the baseline.

Details on the challenge problem are given in Table 36.

4.6.2 WarpX: KPP Stretch Goal

The project goal is to demonstrate the capability to perform the modeling of tens of consecutive multi-
gigaelectron-volt stages. For a multi-teraelectron volt collider design, hundreds to thousands of stages will
be necessary. The KPP stretch goal is thus naturally to reach an FOM that is as high as possible without
the constraint limit on boost from algorithms (BA < 5). Therefore, the stretch goal is to demonstrate the
capability to model as many consecutive multi-gigaelectron-volt stages as possible.
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Table 36: WarpX challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Dynamic Maxwell equations in the presence of a time-varying
electromagnetic field with laser-driven and charged-particle source terms.

Numerical approach,
algorithms

PIC using finite-difference (i.e., FDTD) and/or pseudo-spectral (i.e.,
FFT-based) analytical time domain temporal discretization with
FFT-based field solve on AMR grids with solution in Lorentz-boosted
frame.

Simulation details: problem
size, complexity, geometry, and
so on

Minimum of 1011 grid cells and 2× 1011 macroparticles. Minimum
number of five chained accelerator stages. Laser driver on the order of
1 PW peak.

Demonstration calculation
requirements

Run a minimum of 100 time steps so that performance is accurately
measured by using a preloaded plasma column. Measure FOM for the
FDTD and FFT-based solvers.

Resource requirements to run
demonstration calculation

2 h on 100% of the machine.

4.6.3 WarpX: Figure of Merit

The FOM for WarpX is defined as:

FOM =
(αNc + βNp)NtBA

wallclock time
, (12)

where Nc is the number of grid cells; Np is the number of particles; α, β are the relative cost of grid push and
particle push; and Nt is the number of time steps. The term Boost from Algorithms (BA) includes additional
boost coming from algorithm developments and is constrained by BA ≤ 5.

The FOM without the BA provides the “raw” speed from running the same problem faster or at higher
resolution (more grid cells, particles, and time step) on a newer and bigger machine in the same time (based
on strong/weak scaling). Beyond this, speedup comes from (1) a lower number of grid points and particles
using AMR and (2) a lower number of time steps using a novel large time step (LTS) algorithm. Hence, BA

is the product of two possible algorithmic boosts:

BA = BAMR ×BLTS , (13)

where BAMR is the ratio of the number of cells in the simulation at highest resolution without AMR and
the number of cells with AMR, and BLTS is the Courant condition of the novel LTS solver divided by the
Courant condition of the standard solver.

The current baseline measurement is ∼2.2× 1010 on 6625 compute nodes of Cori (FOM scaled to the full
machine).

FOM Update

The latest FOM measurement, which was performed on July 2, 2020, is ∼2.5× 1012 on 4263 compute
nodes of Summit (FOM scaled to the full machine), giving an improvement of ∼114 over the baseline. Table
37 summarizes the FOM progress to date.

4.6.4 WarpX: Progress on Early and Pre-Exascale Hardware

Performance on Summit

The following section summarizes some key lessons learned from our experience with porting WarpX to
Summit. These fall under three main areas: issues relating to memory management and overall footprint,
issues relating to parallel communication, and the importance of cache utilization on GPU platforms.
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Table 37: Progress in the FOM measurement over time. The code is either
the original Warp code (baseline) or WarpX. The date is the date when the
measurement was taken (month/year). The machine is which computer was
used to make the measurement. The nodes are how many nodes on which the
measurement was performed; there are 9,668 KNL nodes on Cori and 4,608 nodes
on Summit. The FOMs were extrapolated from the number of nodes that the
measurement was taken on to the full machine.

Code Date Machine Nodes FOM

Warp 3/2019 Cori (KNL) 6625 2.2e10
WarpX 3/2019 Cori (KNL) 6625 1.0e11
WarpX 6/2019 Summit 32 8.6e11
WarpX 6/2019 Summit 1000 7.8e11
WarpX 9/2019 Summit 2560 6.8e11
WarpX 1/2020 Summit 2560 1.0e12
WarpX 2/2020 Summit 4263 1.2e12
WarpX 6/2020 Summit 4263 1.4e12
WarpX 7/2020 Summit 4263 2.5e12

Memory Optimization

With the trend toward GPU computing, the importance of optimizing codes for memory consumption has
increased. If we consider only device memory, then each Summit node has six NVIDIA V100 GPUs with 16
GB of memory each for a total of only 440 TB, which is substantially less than Cori phase II. This means that
if users want to run in a mode in which the problem fits entirely on the GPUs—which is desirable considering
the performance penalties associated with frequent host/device data transfers—then users cannot actually
run as big of a problem on Summit as they could on Cori. This makes reducing the memory footprint of a
simulation code very impactful in terms of enabling production-level science calculations.

Reducing the memory footprint can also have performance implications. Originally in WarpX, every
particle stored persistent values for the electric and magnetic fields interpolated to the particle’s position.
In addition to the storage overhead, these values must be communicated every time particles change MPI
domains and shuffled around in memory every time particles are sorted (Section 4.6.4). Additionally, if the
performance of a GPU kernel is memory-bound, meaning its performance is limited by the rate at which data
can be transferred from main memory to the streaming multiprocessors on the GPUs, then increasing the
arithmetic intensity of those kernels by streaming less data and recomputing values on the fly can improve
their overall performance.

Recently, WarpX removed the persistent electric and magnetic fields at the particle positions in favor of
regathering these values inside GPU kernels as they are needed. For this, the field gathering and particle
pushing kernels were fused together in the PIC loop, resulting in fewer data that must be streamed to the
processors in a given time step. In addition to reducing the memory footprint by a factor of ∼1.6, this also
led to a ∼25 % speedup in the overall runtime on several key benchmarks. When the field values at the
particle positions are needed more than once in a step—for example, when modeling additional effects, such
as ionization, or using certain diagnostics—the gather operation is performed multiple times.

Finally, we are currently exploring other means of reducing the overall memory footprint of WarpX,
including exploiting single/mixed precision and employing compression.

Memory Arenas

Dynamic memory allocation is many times more expensive on GPU than CPU architectures. This fact
combined with common programming patterns involving temporary variables can lead to drastic performance
penalties on GPU systems. For example, consider the code in Listing 1. This snippet demonstrates how to
loop over mesh data via the AMReX data structures. The MFIter object instructs each MPI rank to loop over
the grids it owns. For each grid, we resize a temporary scratch space called tmp, then launch a ParallelFor

kernel to do some calculations with it. The Elixir is not essential to the point, but it keeps the scratch space
alive in memory until the kernel is finished working with it; this is needed due to the asynchronous nature of
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GPU kernel launches. If every call to resize the buffer ended up triggering cudaMalloc and cudaFree calls,
this could easily end up becoming the dominant cost of this routine. Another are in which this occurs is in
out-of-place sorting and partitioning operations, which require a temporary buffer in which to store the result.

One way to mitigate this is to refactor application codes to keep temporary buffers alive in memory
instead of letting them go out of scope. However, this is error-prone and labor-intensive. Instead, AMReX
provides several memory arena classes, which allocate memory in large chunks and distribute pieces of it
as the application runs. Thus, although WarpX frequently uses temporary variables, there are no calls to
cudaMalloc or cudaFree during most time steps.

These arenas have several different options for managing memory fragmentation; currently, the default in
AMReX is to use a “first fit” strategy. AMReX provides memory arenas that use host, device, pinned, and
managed memory. WarpX uses these arenas for all of its mesh and particle data structures. By default, when
running on NVIDIA GPUs, WarpX places all of its core data in managed memory.

Listing 1: Example of ParallelFor. This code can be compiled to run on CPU
with OpenMP or GPU with CUDA, HIP, or DPC++.

FArrayBox tmp ;
for ( MFIter mfi (mf ) ; mfi . i s V a l i d ( ) ; ++mfi )
{

const Box& bx = mf . t i l e b o x ( ) ;
tmp . r e s i z e ( bx ) ;
E l i x i r e l i = tmp . e l i x i r ( ) ;
auto const& tmp arr = tmp . array ( ) ;
amrex : : P a r a l l e l F o r (bx ,
[=] AMREX GPU DEVICE ( int i , int j , int k ) noexcept
{

compute tmp ( i , j , k , tmp arr ) ;
})

}

Communication Optimization

Once the initial port of WarpX to NVIDIA GPUs was complete, the initial experience was that compute
kernels, such as current deposition and field gathering, were much faster on V100 hardware than on KNL.
However, this was not true for the AMReX parallel communication routines. The primary reason for this
was that the parallel communication routines involved many small “copy on intersection” routines between
neighboring boxes, especially when packing and unpacking MPI send and receive buffers. These operations
involved little to no computation but launched many small kernels that packed and unpacked data buffers.
Thus, the dominant cost in these routines was the latency associated with the kernel launches, which could
be fused into a fewer number. After optimization, each MPI rank makes only one kernel launch to pack and
unpack its MPI buffers, which led to greatly improved performance on Summit.

Cache utilization

As with CPU-based many-core architectures, rearranging computations so that they properly exploit the
memory hierarchy can result in significant performance increases on V100 GPUs. This section discusses a
case study on how periodic sorting of particle data so that it is processed in a cache-friendly way can greatly
improve the performance of PIC operations, such as field gathering and current deposition on V100. First, we
will briefly describe the current deposition algorithm we use and how it differs between CPU and GPU runs.

Current Deposition In PIC codes, most operations are straightforward to parallelize since particles can be
threaded over and processed independently without needing to worry about potential race conditions.However,
charge and current deposition operations require special consideration since there is the potential for collisions
when threading over particles because multiple threads might attempt to update the same cell simultaneously.

In WarpX, our approach to concurrent scatter operations in particle deposition kernels varies, depending
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Figure 40: The effect of sorting the interval (i.e., sorting every N time steps) and
sorting the bin size on the overall performance on a uniform plasma benchmark.
The x-axis shows the sorting interval, and the y-axis shows the overall time to
take 100 steps, including the cost of the sorting. A sorting interval >100 means
that the particles are never resorted during the run.

on whether we are running with OpenMP or CUDA/HIP/DPC++ as the parallel back end. With OpenMP,
the particles on a grid are sorted onto smaller subregions called tiles. OpenMP threads map to tiles, which
begin processing them simultaneously. Each OpenMP thread deposits particles onto its own private deposition
buffer with enough cells to capture the support of all the particles on the tile. There is no need for atomics at
this stage since each thread has its own buffer. After deposition onto the buffer is complete, the buffer values
are atomically added to the values for the full grid by using atomic writes. Thus, atomics are only needed
on a per-cell basis, not a per-particle basis. However, when running on GPUs, we perform atomics write
directly to global memory for each particle. Along with periodic sorting, this is sufficient to achieve good
performance on NVIDIA V100 GPUs.

Particle Sorting Sorting the particles by their spatial locations periodically on each grid so that particles
that are near each other in memory also interact with cells that are near each other in memory exploits
the memory hierarchy on the GPUs more effectively than processing them in an unordered fashion. This is
particularly true when particles are moving with high velocities and frequently change cells. In that case,
even if particles are sorted at a particular time, they will rapidly become disordered, leading to significant
performance degradation in the particle-mesh operations.

We differentiate between binning, which computes a permutation array that assigns particle indices to
cells with user-defined bin size, and sorting, which uses this permutation array to actually reorder the particle
data in memory. Cache utilization requires full sorting, but for many operations, knowing the cell-sorted
indices is sufficient. AMReX provides a GPU-capable implementation of the counting sort algorithm that can
be used to perform both of these operations. Internally, it is built by using a GPU implementation of parallel
prefix sum, which is based on Merrill and Garland [26] and works on NVIDIA AMD, and Intel GPUs.

In addition to the presented cache-utilization optimization, sorting and/or binning particles is needed
to model particle-particle interactions. By default, the PIC method only models particle-mesh interaction
and mesh updates. WarpX implements binary collisions, which depend on a prior binning of neighboring
particles, to address various applications in accelerator and beam physics.

Figure 40 shows the results of a parameter study in which the bin size and sorting interval were varied.
For example, a bin size of 2× 2× 2 and a sorting interval of 4 mean that particles were sorted into 2× 2× 2
supercells every four timesteps. On this problem, the optimal sorting is to sort by cell (i.e., a bin size of
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Figure 41: Roofline analysis of the third-order Esirkepov current deposition
[25] kernel in WarpX on a single V100 GPU with and without particle sorting.
In the memory streaming limit, three different lines are shown, corresponding
to the bandwidths of the L1 and L2 caches and the bandwidths for the main
high-bandwidth memory (HBM) on the GPU. Likewise, in the compute-bound
regime, two different values are used for the peak floating point performance with
and without taking advantage of fused multiply-add instructions. The arithmetic
intensity is measured three times for each kernel via the memory traffic for each
level of the memory hierarchy. For the sorted version, the arithmetic intensity
is significantly lower for the L1 and L2 data points, which shows that we are
achieving substantial reuse in both levels of cache. Conversely, because the data
points are all on top of each for the unsorted run indicates that without sorting,
the degree of reuse is poor.

Figure 42: This figure is the same as Fig. 41 but is for the fused gather and
push kernel in WarpX. Again, there is substantial cache reuse when sorting is
employed, although performance still appears to be limited by HBM bandwidth
for this kernel, even with sorting.
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1× 1× 1 every time step, and the difference between sorting optimally and not sorting at all is a factor of
∼7.5 with most of the improvement coming from the current deposition and fused gather and push kernels.
However, this very frequent sorting interval is specific to this problem in which the particles change cells
more often than in most WarpX applications. Currently, the default in WarpX used throughout § 4.6.4 is to
sort the particles by their PIC cell every four time steps.

Although the Redistribute() function in AMReX does not maintain this cell-sorted order for particles
that left one grid and were migrated to another, this only applies to particles that have changed grids—
typically only a small subset of the total that are near the “surface.” Most particles on a grid will maintain
their sorted order in between Redistribute() calls.

Figures 41 and 42 show the results of a roofline analysis on the current deposition and fused gather and
push kernels in WarpX, which are the two most computationally expensive operations. Our analysis followed
the methodology of Yang, Kurth, and Williams [27]. For this test, we used a uniform plasma setup with
eight particles per cell and gave the particles a large thermal velocity so that they frequently change cells.
To eliminate the effects associated with unified memory paging, we ran the problem for 100 steps and only
profiled the last one.

The roofline analysis reveals three things. First, as already demonstrated, sorting the particles gives
significantly better performance on V100 GPUs than not sorting them. Second, the arithmetic intensity
measured via the memory bandwidth for the L1 and L2 caches is significantly lower than for HBM, which
indicates that we are getting significant reuse in both cache levels in the sorted run. Third, the arithmetic
intensity for the current deposition for the sorted run is directly against the streaming limit for the L2 cache.
This indicates that the performance of this kernel is now limited by the L2 cache bandwidth. On the other
hand, gather and push is likely still limited by HBM bandwidth. Taken together, these results suggest that
these kernels should achieve significantly better performance on the A100, which has a larger L2 cache and
higher HBM bandwidth than the V100.

Performance Results

This section provides current performance results on Summit on a uniform plasma test case.

Weak scaling study To test the scaling of WarpX in an idealized setting and gauge the speedup associated
with using accelerated nodes, we performed a weak-scaling study by using a uniform plasma setup on OLCF’s
Summit supercomputer. The base case for this scaling study used a 256× 256× 384 domain with a box size
of 1283 and ran on one Summit node; thus, on the GPU-accelerated runs, each GPU was responsible for
processing two 1283 sized boxes. Particles were initially distributed uniformly with eight particles per cell.
We used the standard “Yee” finite-difference Maxell solver for these runs with Esirkepov current deposition
and third-order shape functions. The number of Summit nodes was doubled with the number of cells and
particles therein in the x-, y-, or z- directions while holding everything else constant, maintaining a constant
workload per node. We continued this process up to 2048 nodes—about half of the Summit machine.

The results are shown in Fig. 43. We performed this scaling study twice: once using all six GPUs per
Summit node and again using only the POWER9 CPUs. For both runs, we used six MPI tasks per node.
So that all 42 cores on the node were active, we used one GPU per MPI task for the GPU-accelerated runs
and seven OpenMP threads per task for the CPU-only case. Using these results, we can characterize the
weak-scaling behavior of the CPU and GPU versions of the WarpX, as well as see the overall speedup obtained
on Summit by using the accelerators. In both cases, the code scales well up to 2048 nodes. The weak-scaling
efficiency, defined as the total time taken for 100 time steps on one node divided by the total taken on 2048
nodes, is 81 % for the GPU case and 90 % for the CPU case. The difference in scaling efficiency between the
CPU and GPU can be attributed to the fact that because the local work is significantly faster when using
the V100s, communication operations such as FillBoundary, which are inherently harder to scale, become
relatively more expensive. Additionally, the speedup from the accelerators at all scales tested was a factor of
∼30. This speedup refers to the total runtime, including the time associated with host/device memory traffic
and communication, not to isolated compute kernels.

Strong Scaling Study We also conducted a series of strong scaling tests by using uniform plasma problem
setup very similar to the one used before. The only difference is that the box size was set to 643 to allow for
more GPUs/MPI tasks to be used as the problem is strong-scaled. There is some overhead associated with
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Figure 43: Results of a weak-scaling study on a uniform plasma setup on
Summit. The x-axis shows the number of Summit nodes, and the y-axis is the
number of particle advances per nanosecond. The CPU and GPU versions of
the code both scale well, and the overall speedup associated with using the
accelerators is ∼30.
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Figure 44: Strong-scaling studies for a variety of problem sizes. Each tick type
refers to a different problem size. The x-axis shows the number of Summit nodes,
and the y-axis shows scaling efficiency, which is defined as the time that a run
should take, assuming perfect strong scaling within a problem size and perfect
weak scaling from the base problem size, divided by the actual runtime.

doing this because the surface to volume ratio of ghost cells is higher with smaller boxes. Other than the box
size, the parameters are all the same as before.

We used a series of problem sizes, each scaled up by a factor of 2 in terms of the number of cells and
particles in the domain. For each, we conducted a series of five runs, increasing the number of MPI tasks by
a factor of 2 each time. Thus, assuming perfect strong scaling, the runtime should have decreased by a factor
of 16 in the fifth run. By the time we multiplied the number of MPI ranks by 16, this problem had reached
the point at which the compute work and the communication work take approximately the same amount of
time, so we would not expect the problem to scale further than that.

The smallest scaling study in this series goes from 1 to 16 nodes, and the largest goes from 256 to 4096
nodes, which is nearly the entire machine. The scaling efficiency, defined as the time a run should take,
assuming perfect strong scaling within a problem size and perfect weak scaling from the base problem size
divided by the actual runtime, is plotted in Fig. 44. The efficiencies after strong scaling by a factor of 16 for
each problem size vary from approximately 70 % for the smallest case to approximately 50 % for the largest.

Next Steps

WarpX now runs at scale on Summit, and a model of a chain of up to 10 consecutive plasma accelerator
stages was demonstrated on Summit. Further optimizations include reducing the size and communication
costs of guard regions when using the pseudo-spectral Maxwell solver and using single precision for part or
whole of the particle-in-cell loop. A new algorithm that allows time steps to be used above the limit for
standard particle-in-cell methods was developed and will be validated on plasma accelerator simulations
on Summit. The development of mesh refinement will also be pursued with the integration of the latest
algorithmic developments.

For AMD GPUs, our focus will be on further investigating and optimizing key kernels. For example, we
will explore ways to reduce the number of registers used in the current deposition kernel whose occupancy is
currently limited by the number of registers. For Intel GPUs, we will start building and running WarpX
on ATS nodes with the latest Intel HP GPUs. Because the latest Intel GPUs have native double precision
support and high-bandwith device memory, a more detailed performance analysis will be carried out. For
both AMD and Intel GPUs, we will also start building and running WarpX on multiple GPUs.

New and Ongoing Integrations with ECP S&T
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Table 38: Summary of supported ESS L4 projects.

WBS
number

Short name Project short description KPP-X

2.2.3.01 ExaStar Demystify the origin of chemical elements KPP-2

2.2.3.02 ExaSky Cosmological probe of the Standard Model KPP-1

2.2.3.03 EQSIM Seismic hazard risk assessment KPP-1

2.2.3.04 Subsurface Carbon capture, fossil fuel extraction, waste disposal KPP-2

2.2.3.05 E3SM-MMF Regional assessments in earth systems KPP-1

WarpX added a first integration with Ascent for in situ visualization, which produced first figures
and videos for the aforementioned multistage milestone on Summit, including GPU-accelerated compute
and in-memory visualization with VTK-m. Because first functional correctness was achieved, the ongoing
collaboration with the Alpine (Ascent) team will focus on providing more functionality for domain-specific
visualization needs, providing advanced rendering options for highlights, relaxing initial limitations in the
composition of rendered scenes, deploying software, and performing performance optimizations.

We successfully created a first functional I/O implementation compatible with the Open Standard for
Particle-Mesh Data (openPMD) [28]. openPMD is a generalized metadata format that we use to unify the
input and output of data in a suite of particle accelerator codes. The first bindings to ADIOS2 and HDF5,
abstracted via our own openPMD-api middleware layer, were implemented. The first developer tests that
compressed ADIOS2 data with ZFP were also successful. All our current I/O methods suffer from varying
performance regressions at scale and in read performance. Due to high flexibility and good tunability, the
upcoming year will focus on performance tuning of ADIOS2 for I/O workflows.

We continue to integrate our software stack with ECP Spack to ensure that we can build the full
functionality of WarpX in a consistent deployment. We are already using Spack environments for development
and continue to contribute further recipes and updates, including binary deployment via E4S.

5. EARTH AND SPACE SCIENCE APPLICATIONS

End State: Deliver a broad array of comprehensive science-based computational applications able
to provide, through effective exploitation of exascale HPC technologies, breakthrough modeling
and simulation solutions to fundamental issues and scientific questions centered on key planetary
processes and the origin of the universe.

The Earth and Space Science Applications (ESS) application L3 area (Table 38) spans fundamental
scientific questions from the origin of the universe and chemical elements to planetary processes and interactions
affecting life and longevity. These application areas treat phenomena where controlled and fine resolution
data collection is extremely difficult or infeasible, and in many cases fundamental simulations are the best
source of data to confirm scientific theories and predict critical phenomena.

The key objective in the area of ESS is to utilize exascale resources to carry out simulations of phenomena
with massive ranges of space and temporal scales, and where controlled data collection is extremely limited
or impossible. These applications are critical to mankind’s well-being and understanding of fundamental
questions of the universe, and in many cases advanced simulation is the most effective vehicle for gaining
insight into these processes. As their computing requirements are massive, it is critical to develop these codes
to make efficient use of exascale computing resources.

5.1 ExaStar

This project is developing a new code suite, Clash, which will be a component-based multiphysics AMR-based
tool kit that accurately simulates coupled hydrodynamics, radiation transport, thermonuclear kinetics, and
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nuclear microphysics for stellar explosion simulations. Clash comprises the FLASH and Castro multiphysics
codes and associated modules, which will reach exascale efficiency by building on current multicore and
manycore efficient local physics packages integrated into a task-based asynchronous execution framework based
on current AMR technology. The fundamental goal in Clash development is to understand the production
of the chemical elements in these explosions, particularly those heavier than iron. Although astronomical
observations reveal that the production of the heaviest nuclei began early in galactic history, it is unknown how
and where these elements were formed. To address this topic via laboratory measurements, a series of Nuclear
Science Advisory Committee Long Range Plans have supported the construction of radioactive ion beam
facilities, culminating in the Facility for Rare Isotope Beams (FRIB). Although FRIB is designed to acquire
extensive data on the nuclei relevant for astrophysical nucleosynthesis, its science end goal cannot be met
unless those experimental data are integrated into high-fidelity simulations of stellar explosions—supernovae
and neutron star mergers—that define the conditions under which such heavy element production most likely
occurs. Through a better understanding of the sites at which the heaviest elements are made, Clash can help
focus experimental efforts at FRIB on those reactions of greatest influence.

5.1.1 ExaStar: Science Challenge Problem Description

The ExaStar challenge problem is a 3D simulation of the first 2 s of evolution after the iron core bounce of a
core-collapse supernova. The progenitor star model will be chosen at runtime from the best available models.
The most likely progenitor models are: (1) the solar metallicity 12 solarmass progenitor of Sukhbold, Woosley,
and Heger [29], which was chosen because it represents the “center” of the distribution of massive stars that
produce core collapse supernovae (CCSNe), and (2) the binary merger model of Menon and Heger [30], which
was chosen because it is believed to closely mimic the progenitor system of SN 1987a, the only CCSNe from
which there are multi-messenger signals to date.

The physical domain will extend from the center of the star outward to fully enclose the helium shell of the
evolved star. The precise location of this radius is progenitor-dependent, but it is always more than 10,000 km.
The maximum spatial resolution enabled with AMR will be at least 1 km at the surface of the proto-neutron
star (i.e., in approximately the inner 100 km of the event). At least 20 energy groups will be used to resolve
the spectra of neutrinos of all types (i.e., electron, mu, tau, and their anti-particles) from 0 to 300 MeV. An
approximation to general relativistic gravity that uses at least 12 moments in a multipole approach will be
used, with the option to have a more realistic treatment (e.g., conformally flat approximation), if possible. A
set of tabulated neutrino-matter interaction rates—which include emission, absorption, scattering, and pair
production from various nuclear and nucleonic processes—will be used. This table will be coupled to a set of
tabulated quantities derived from a high-density EOS that will provide pressures, entropies, and all other
required thermodynamic values as required by, for example, the hydrodynamics. The available set of coupled
rates and EOS tables will include, the SHF0 EOS of Steiner, Hempel, and Fischer [31] at a minimum. Details
on the challenge problem are listed in Table 39.

5.1.2 ExaStar: KPP Stretch Goal

The ExaStar stretch goal is to perform a 3D simulation of the initial phases of a neutron star merger. Unlike
the core collapse supernova challenge problem, this stretch goal requires a general relativistic (GR) dynamical
space-time solver and a GR magneto-hydrodynamics solver, which represent a significant advance in code
capability. The initial conditions of the problem will comprise two neutron stars in a quasi-circular orbit
with a separation sufficient to complete two to three orbits before mergers. The simulation domain will
cover 3000 km (roughly 300 neutron star radii) with a resolution that uses AMR of order 100 m. Instead of
Newtonian gravity, a dynamical space-time solver that uses a high-order finite differencing scheme will be
employed with corresponding Kreiss-Oliger dissipation terms to discretize space-time variables in the BSSN
formalism. Additionally, a general relativistic ideal magneto-hydrodynamics solver will use the metric from
the space-time solver to advance the fluid dynamics while ensuring a divergence-free magnetic field. They will
use a generalized version of the two-moment neutrino transport module that includes the relevant general
relativistic terms with an order of 20 energy groups used to resolve the spectra of neutrinos. The transport
will use a tabulated neutrino-matter interaction rate coupled to a set of tabulated quantities derived from a
high-density EOS. Because the physical conditions in the dynamical phase of mergers do not involve complex
nuclear reactions, only a small reaction network, including nucleons and alpha particles, will be required.
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Table 39: ExaStar challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

Core-collapse supernova, compressible hydrodynamics, self-gravity,
nuclear burning, specialized equation of state, neutrino transport.

Numerical approach,
algorithms

Finite volume shock-resolving Eulerian solvers, Poisson solver, ODE, 0D
calculations from tables for EOS, discontinuous Galerkin finite elements
for neutrino transport.

Simulation details: problem
size, complexity, geometry, and
so on

Maximum spatial resolution enabled with AMR will be at least 1 km at
the surface of the proto-neutron star (i.e., in the inner 100 km); 20
energy groups to resolve the spectra of neutrinos of all flavors (i.e.,
electron, mu, tau, and their anti-particles) from 0 to 300 meV; an
approximation to general relativistic gravity using at least 12 moments
in a multipole approach will be used with the option to have a more
realistic treatment (e.g., conformally flat approximation), if possible.

Demonstration calculation
requirements

Partial evolution from a post-bounce configuration, which can be evolved
to this point in spherical symmetry. The evolution must be long enough
to provoke several epochs of AMR mesh generation and restriction.

Resource requirements to run
demonstration calculation

Full exascale machine for 2 h.

The simulation will cover roughly the first 20 ms of the merger or if a black hole forms for a few milliseconds
after formation, which is sufficient to determine the amount of dynamical mass ejected and the composition
and asymptotic kinetic energy of the outflows.

5.1.3 ExaStar: Capability Plan

The capability matrix for ExaStar is shown in Table 40.

5.1.4 ExaStar: Progress on Early and Pre-Exascale Hardware

Performance on Summit

All physics modules required for the ExaStar base challenge problem were implemented, verified with
test problems, and ported to GPUs. These modules were integrated into the FLASH code and exercised on
supernova simulations of reduced dimensionality, spatial resolution, and evolution in time.

The calculation of neutrino radiation transport using the two-moment radiation transport module Thornado
represents possibly the most computationally expensive component of the astrophysical simulation. ExaStar
developed, implemented, and tested various nonlinear solvers for implicit neutrino-matter coupling in an
IMEX scheme for two-moment transport. Profiling results on Summit, shown in Fig. 45 (left panel), indicate
that a nested Anderson acceleration (AA) scheme has the best performance, being a factor of two faster
than a coupled Newton or coupled AA method. The nested solvers require fewer outer iterations, reducing
the number of calls to expensive neutrino opacity kernels. The nested AA solver is moderately (∼ 10×)
faster than a nested Newton’s method due to the latter’s additional dense linear algebra cost. The transport
modules, along with other physics modules in the ExaStar ecosystem, will rely on good dense linear algebra
libraries for good performance.

The fidelity of the neutrino transport was enhanced by completing the tabulation of the base neutrino
opacity set with improved microphysics, including emission/absorption, elastic scattering, neutrino-electron
scattering, and pair processes. Profiling on Summit (Fig. 45, right panel) indicates that the bottleneck for
Thornado transport calculations is table interpolations for the opacity. The cost is mitigated when using
GPUs, and a 10× speedup was achieved relative to CPUs. Slight differences in performance are seen between
openACC and OpenMP with off-load, which could be compiler-related.
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Table 40: Capability matrix for ExaStar.

FY20 FY21 FY22 FY23

Neutrino Physics Fully couple
electron-flavor
neutrinos and
anti-neutrinos.
Exercised on
radiation test
problem.

nu-nubar + muons

Radiation Transport Two-moment
discontinuous
Galerkin method,
no-frame effects.

Transport informed
by multi-angle MC
methods in
marginally optically
thin regions. Beta
version of
frame-effects in
two-moment
transport.

Fully implemented
frame-effects in
two-moment
transport.

Fully implemented
frame effects in
two-moment
transport;
integration of MC
transport support.

Gravity Asynchronous
multipole solver
(Newtonian).
Performance
compared with
previous solver.

GR hydrodynamics
with fixed metric.

Full space-time
solver and GR
hydrodynamics.

Hydro/MHD Implementation and
testing of GR MHD
solver.

GR MHD tested
and exercised on
science problem.

Optimized
performance of
MHD solver.

Network Large (160 species),
profiled on GPU.

Large. Large. Larger.

EOS Tabulated with
GPU-enabled
interpolation.

Gaussian process
enabled. EOS

Hybrid EOS with
smooth transition.

Best available
combination.

Integration Run and profile
integrated core
collapse simulation
run through bounce
with reduced dimen-
sionality/resolution.

Run and optimize
integrated core
collapse simulation
through bounce
with higher dimen-
sionality/resolution.

Run and profile
integrated neutron
star merger disk
simulation with best
available physics.

Run integrated core
collapse simulation
through bounce and
shock propagation
with full
dimensionality,
target resolution
and highest fidelity
physics.

GPU readiness Hydro solver in
Castro working with
HIP.

Exascale Computing Project (ECP) 93 ECP-U-AD-RPT 2021 00208



Figure 45: Performance of the Thornado radiative transport module on Summit.
(Left) Code performance using different nonlinear solvers; a nested Anderson
acceleration scheme provides the fastest results. (Right) Profiling the compo-
nents of the transport calculations. The implicit part of the calculation, which
treats neturino-matter coupling, dominates over the explicit part, which treats
radiation advection. Of the implicit part, the calculation of opacities through
table interpolation is the most costly component. A 10× speedup is achieved on
GPUs by using openACC or OpenMP with off-load.

ExaStar has developed new physics modules needed for its stretch goal. Initial testing was performed,
although these modules have not yet been integrated into the full FLASH framework. A general relativistic
space-time solver was implemented by using an explicit time integration. This solver leverages AMReX
abstractions for massively parallelizable data structures and iterators for mesh data. It includes AMR with
sub-cycling in time and a higher order time integrator. Code generators are used to allow for precise unpacking
of the complex set of Einstein equations, translating from Python to AMReX usable C. The compilable
expression of the right-hand side of the evolution equations, which use higher order spatial discretizations,
convert PDEs to ODEs via a method of lines. The space-time solver was ported to GPUs, and the results were
confirmed to be identical to CPU up to numerical roundoff. Figure 46 shows the strong scaling performance
for a test calculation, run in this case on NERSC’s Cori machine with NVIDIA Tesla V100. The run used
one MPI rank per GPU and the equivalent of 15 Summit nodes. High occupancy is confirmed to provide the
most efficient results.

Other physics modules used in ExaStar—such as nuclear reaction networks, hydrodynamics, and EOS—
were ported to GPUs in previous years and demonstrated to have similar speedups on Summit. Integrated
simulations run on Summit using the FLASH code with improved physics modules have followed a core
collapse supernova simulation that captures the key features of stellar collapse, core bounce, and shock
formation.

Next Steps

Continuing work will improve the physical fidelity of ExaStar simulations. The Thornado transport
module will be generalized to include relativistic effects and enhanced microphysics. As the two-moment
formulation of the transport problem approximates the angular distribution of the radiation field, an MC
transport method was implemented within the AMReX framework that solves the Boltzmann equation in full
generality. Although MC might be too computationally expensive, ExaStar will explore a hybrid approach
in which the neutrino emissivity is split in a weighted fashion with the two-moment method preferentially
applied in the interior regions of the system where the radiation is more nearly isotropic and with the MC
method applied in the exterior, optically thin regions where MC is more efficient. Further work will implement
and test such a hybrid algorithm; if the approach proves unfeasible, the MC could still be used to derive
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Figure 46: Strong scaling of the space-time solver module run on NERSC’s
Cori with NVIDIA Tesla V100 using the equivalent of 15 Summit nodes. One
MPI rank per GPU was used with all integrator/RHS functions on the GPU.
Blue points are a comparison of the scaling results relative to the ideal (red line).
The green line shows the percent memory usage with high occupancy being more
efficient.

improved analytic closures required by the two-moment module.
The new space-time solver will be implemented and tested on AMReX adaptive meshes. Additionally,

new development will replace the Newtonian hydrodynamics in FLASH with a module for general relativistic
magneto-hydrodynamics. A prototype module called Spark was already put into FLASH and run on initial
benchmark calculations for relativistic shocks with a fixed space-time metric. Future work will port Spark to
GPUs and integrate it with the space-time solver, enabling the full general relativity required for the ExaStar
stretch goal of a neutron-star merger simulation.

Design specifications of an orchestration system will be completed, and the base functionality of the system
will be implemented. The orchestration system has two primary components. The first is a runtime system
responsible for data movement between devices and launching kernels. The second is an offline toolchain that
can parse meta-information encoded by the component writers, indicating various options for configuring the
kernels within the component, matching with the specifications of the target platform, and generating the
code and information needed by the runtime to operate correctly. Work will complete the design specification
for the toolchain through the process of prototyping within the design space.

Because significant changes are being made to the code infrastructure and data movement algorithms in
FLASH, performance bugs must be caught. A performance monitoring system will be incorporated into the
daily test suite that will allow us to closely observe code behavior. This will be in addition to any targeted
benchmarking that is done with every main section of the orchestration system.

ExaStar is modernizing the Paramesh AMR package as a risk mitigation plan in the event that the
performance of AMReX in FLASH proves suboptimal. Initial studies will address asynchronizing primary
communication, steps such as ghost-cell fill, regridding, and flux-correction. The process will start by
converting communications in ghost-cell fill to one side and specifying meta-information that must accompany
the data for the target to be able to process it asynchronously.

With an eye toward ExaStar’s base challenge goal, we will run and evaluate a science problem to test the
hydrodynamics and two-moment neutrino transport coupling for a dynamic core-collapse matter background,
including the existing Newtonian gravity solver. This will use a collapsing massive star as the initial
condition to test the hydrodynamics and transport coupling with best available neutrino physics in a dynamic
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environment. Profiling will provide further information on any bottlenecks and inefficiencies in the integrated
simulation that covers the physical conditions anticipated in the challenge problem.

5.2 ExaSky

Modern cosmological observations carried out with large-scale sky surveys are unique probes of fundamental
physics. They have led to a remarkably successful model for the dynamics of the universe and several
breakthrough discoveries. Three key components—dark energy, dark matter, and inflation—are signposts
to further breakthroughs because they all reach beyond the known boundaries of the Standard Model of
particle physics. A new generation of sky surveys will provide key insights into questions raised by the current
paradigm and provide new classes of measurements, such as neutrino masses. They might lead to exciting
new discoveries, including those of primordial gravitational waves and modifications of general relativity.
Sophisticated, large-scale simulations of cosmic structure formation are essential to this scientific enterprise.
These simulations not only shed light on some of the biggest challenges in physical science but also rank
among the largest and most scientifically rich simulations run on supercomputers today. Existing machines
do not have the performance or memory needed to run the next-generation simulations that are required to
meet the challenge posed by future surveys whose timelines are parallel to that of the ECP. The ExaSky
project extends the HACC and Nyx cosmological simulation codes to efficiently use exascale resources as
they become available. The Eulerian AMR code Nyx complements the Lagrangian nature of HACC; the
two codes are being used to develop a joint program to verify of gravitational evolution, gas dynamics, and
subgrid models in cosmological simulations at a very high dynamic range.

To establish accuracy baselines, there are statistical and systematic error requirements on many cosmo-
logical summary statistics. These statistics include the density fluctuation power spectrum, the halo mass
function, the halo bias as a function of mass, the weak gravitational lensing shear power spectrum, and
kinematic and thermal Sunyaev-Zeldovich effects for galaxy clusters. There are also several cross-correlations,
such as the density-halo cross power and cosmic microwave background cross-correlation with large-scale
structure. The accuracy requirements are typically scale-dependent, large spatial scales being subject to
finite-size effects and small scales being subject to several more significant problems, such as particle shot
noise and code evolution errors, including subgrid modeling biases. Strict accuracy requirements were already
set by the observational requirements for DOE-supported surveys ,such as the CMB-Stage 4 (CMB-S4),
Dark Energy Spectroscopic Instrument (DESI), and Rubin Observatory’s Legacy Survey of Space and Time
(LSST), which typically are sub-percent (statistical) over the range of well-observed scales. Systematic errors
must be characterized and controlled, where possible, to the percent level or better. All of these error controls
must be satisfied when running the challenge problem simulations at the >50× FOM requirement. For a
recent exploration of cosmological simulation errors in hydrodynamic simulations by ExaSky, see Emberson,
Frontiere, Habib, Heitmann, Larsen, Finkel, and Pope [32]; this paper uses the ExaSky-developed CRK-HACC
code that implements the recently developed CRK-SPH method [33] in a cosmological setting. The final
challenge problem runs will be carried out with a new set of subgrid models for gas cooling, UV heating, star
formation, and supernova and AGN feedback, which are now under active development.

The simulation sizes are set by the scales of the cosmological surveys. The challenge problem simulations
must cover boxes of linear size up to the few gigaparsec scale with galaxy formation-related physics modeled
down to roughly 0.1 kpc, a dynamic range of one part in 10 million, improving the current state of the art
by an order of magnitude. Multiple box sizes will be run to cover the range of scales that must be robustly
predicted. In the smaller boxes, the mass resolution of the simulations will go down to roughly 1 million
solar masses for the baryon tracer particles and about five times this value for the dark matter particles; the
largest boxes will involve larger particle masses by roughly two orders of magnitude. The final dynamic range
achieved depends on the total memory available on the first-generation exascale systems.

5.2.1 ExaSky: Science Challenge Problem Description

The ExaSky science challenge problem will eventually comprise two very large cosmological simulations run
with HACC that simultaneously address many science problems of interest. Setting up the science challenge
problem requires multiple simulations, which will be completed before the arrival of the exascale systems.
These involve building subgrid models by matching against results from very high-resolution galaxy formation
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Table 41: ExaSky gravity-only challenge problem details.

Simulation target Specifications

Initial conditions Multiparticle Gaussian random field initial conditions using a specified
linear power spectrum at the initial redshift based on ExaSky’s 3D
SWFFT with up to 30,000 cube FFTs.

Boundary conditions Periodic (box size of 3 Gpc/h).

Resolution Force resolution, ∼1 kpc, mass resolution ∼2× 108 solar masses
(gravity-only run), and ∼109 solar masses (dark matter), ∼2× 108 solar
masses (baryons) for the hydrodynamic simulation. This corresponds to
23,0403 particles for the first simulation and 2× 12,2883 for the hydro
simulation.

Physics N-body gravity via spectral particle-mesh (long-range) and direct
particle-particle or tree/FMM (short-range); Lagrangian hydrodynamics
with CRK-SPH. Subgrid models for UV cooling and heating; star, black
hole, and galaxy formation and associated effects; supernova; and AGN
feedback.

Science outputs Summary statistics for matter and velocity fields, Lyman-alpha forest,
weak lensing shear, halo properties and halo spatial statistics, halo
merger trees, and tSZ and kSZ statistics. Light-cone outputs, galaxy
summary statistics, strong/weak lensing for galaxy clusters, and sky
maps for optical and CMB observables. Multiprobe cross-correlations.

astrophysics codes via a nested-box simulation approach, a medium-scale set for parameter exploration. The
final two large-scale challenge problem runs on the exascale platforms will be based on these results.

The challenge problem runs are of two different types. The first is a large-volume, high-mass, and force
resolution gravity-only simulation (Table 41), and the second is a corresponding hydrodynamic simulation
that includes detailed subgrid modeling (Table 42). The second simulation will include hydrodynamics and
detailed subgrid modeling. The main probes targeted with these simulations are strong and weak lensing
shear measurements, galaxy clustering, clusters of galaxies, and cross-correlations that are internal to this set
and with CMB probes, such as CMB lensing and thermal and kinematic Sunyaev-Zeldovich effect observations.
The challenge problem runs will have the same cosmology and simulation volume; they will also share the
same random phases in the initial conditions. This will allow us to investigate the effects of baryonic physics
on cosmological probes via a direct comparison across the two simulations.

There are two different optimization strategies for the ExaSky challenge problem. The first is to maximize
the performance of the gravity and hydro solvers, and the second is to develop a new generation of subgrid
models in which known empirical results are emergent rather than enforced, as is mostly the case currently.
The aim with this more physics-based approach is to achieve a more consistent approach in which the final
results become independent of code parameters and are more easily interpreted. The new subgrid models
not only must be optimized for the exascale platforms but they also affect the temporal resolution of the
simulations. Once implemented, more time steps are needed as more fine-grained physics is being included
and resolved. More than the raw performance of the main solvers, which is very good and will remain so, this
feature will strongly affect the computational requirements for running the challenge problem.

5.2.2 ExaSky: KPP Stretch Goal

The stretch goal will be to increase the number of particles in the simulations, depending on the memory
available on the systems. The improved mass resolution will increase the computational intensity and will
increase the wallclock requirement for the demonstration calculation. The current estimate for the stretch
goal is based on a 30,7203 particle problem (compared with the 23,0403 particles for the base gravity-only
problem) and 2× 15,3603 for the hydrodynamics problem. This will increase the demonstration runtime by a

Exascale Computing Project (ECP) 97 ECP-U-AD-RPT 2021 00208



Table 42: ExaSky subgrid challenge problem details.

Simulation target Specifications

Physical phenomena and
associated models

Multiscale cosmic structure formation—gravitational evolution, gas
dynamics, and subgrid models for astrophysical processes, including
several feedback mechanisms.

Numerical approach,
algorithms

Lagrangian (n-body) with CRK-SPH hydrodynamics for the HACC
code; multiple data-intensive algorithms, including AI/ML, in HACC’s
CosmoTools analysis library.

Simulation details: problem
size, complexity, geometry, and
so on

Multitrillion multispecies particle simulation with fully representative
subgrid modeling for the challenge problem; results must be available at
low redshift (near the current epoch).

Demonstration calculation
requirements

(1) Limited number of time steps with a fully representative simulation
for the solvers but not for the subgrid models; ability to run to low
redshift. (2) Smaller scale simulation with subgrid models fully
implemented, run with a larger number of time steps, again to low
redshift.

Resource requirements to run
demonstration calculation

The demonstration case will require a large fraction of an exascale
system for about 48 h of runtime.

factor of 2, at a minimum.
In terms of additional capabilities, it is important that several data-intensive and AI/ML-oriented analysis

capabilities be available on the exascale systems. As Table 41 makes clear, the science outputs from the
simulations are complex and require multiple analyses carried out with HACC’s CosmoTools framework in
all three analysis modes: in situ, co-scheduled, and off-line. Consequently, the ExaSky project will stress
test several capabilities of the exascale systems (e.g., file I/O, AI/ML performance) aside from the purely
computation-oriented requirements.

5.2.3 ExaSky: Figure of Merit

In principle, the ExaSky FOM requires a discussion of several factors to arrive at a well-defined single number
that can simultaneously capture a multidimensional set of requirements. In terms of overall throughput or
delivered performance, the basic issues can be divided into three components: (1) increase in problem size
(weak scaling), (2) node-level computational performance (strong scaling), and (3) the addition of new science
capabilities, such as physics complexity, which in the case of ExaSky is a statement about subgrid models.
Provided that weak-scaling targets are met, increases in problem size should provide a linear increase in
the FOM; likewise, provided that the strong-scaling targets are met, problems at a fixed size should run
proportionally faster. Although ExaSky comprises two simulation codes, HACC and Nyx, because the final
large-scale simulations for the exascale challenge problem will be run with HACC, the FOM will be based on
results with HACC alone. To summarize, a scaled-down version of the challenge problem run at low redshift
will be used to determine code throughput in three modes: gravity-only, gravity + hydro, and gravity +
hydro + subgrid. The results from these runs will be combined to yield a single FOM with weight factors
chosen to represent the importance of each particular test with respect to the challenge problem runs.

The problem with factoring the complexity of the subgrid models into the FOM is that because these
models are continuously evolving and were not run—and will not be run—on systems such as Mira and
Titan, it is very difficult to estimate what the performance ratios would be across platforms, especially if
the baseline platforms are unavailable or if it is not helpful to port new applications to obsolete systems.
Fortunately, the subgrid model performance from the FOM can essentially be eliminated for two reasons:
(1) the subgrid models are entirely local and as such do not affect the weak scaling performance of the code
and (2) the primary effect of having subgrid models is twofold: an increase in the time for an individual
short-range computational map that combines gravity and hydrodynamic forces and a reduction in the actual
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value of the short-range time step (i.e., higher time resolution) once the subgrid models are incorporated.
The latter effect can be very significant, leading to increases in the overall number of time steps by one or two
orders of magnitude, whereas the actual increase in time due to the additional work per time step is only on
the order of 10–20%. For this reason, the FOM remains controlled by the time spent in the main solvers (i.e.,
gravity + hydro); therefore, the performance of these can be used to determine this value without needing to
consider how the new subgrid models would perform on the baseline platforms.

The current baselines for the FOM were established by gravity-only runs on Intel KNL platforms (Cori II,
Theta) and on the IBM BG/Q systems Mira and Sequoia. CPU/GPU runs include simulations on Titan,
SummitDev, and Summit. Initial (nonradiative) CRK-SPH hydro runs were performed on Cori II, Theta,
SummitDev, and Summit. Details of the baseline information are presented in the ExaSky milestone report
ADSE01-29, MS3/Y2: Summit Performance Metrics for HACC. Because of HACC’s demonstrated excellent
weak- and strong-scaling performance, it is easy to convert wallclock numbers from one set of simulation runs
to another if the physical parameters of the runs are kept unchanged (i.e., cosmological parameters and force
and mass resolution are held invariant, whereas the number of compute nodes can be varied).

Therefore, the HACC FOM calculation is based on the following steps (ADSE01-29).

1. Establish code scaling on the reference and evaluation systems. HACC must: (1) strong-scale at settings
typical of the challenge problem requirements and (2) weak-scale to the full size of the evaluation
system. Both of these requirements must also be satisfied for the reference system.

2. Run representative problems on both systems. A smaller problem run on the reference system can be
appropriately scaled to the one on the evaluation system by using the known weak-scaling performance.
Also, compute the per-time-step throughput for the inverse of the time taken to run one time step in a
code configuration typical of the late universe where the time-stepping is the most compute-intensive.

3. Compute the throughput ratios of the evaluation system to the reference, making sure to scale the
reference system performance to 20 PFlops (peak).

4. If desired, apply this methodology separately to the gravity-only part of the code, to the gravity + hydro,
and to the final gravity + hydro + subgrid model code versions. This is useful because intermediate
FOMs for the solvers can be generated even if all the subgrid models are not implemented. The final
set of FOMs will be applied by using Summit as the base system with appropriate scaling based on the
known FOMs for Summit referred to the previous generation of machines.

FOM Update

The ExaSky FOM is is designed to represent the most important components and goals of the challenge
problem, and it is straightforward to implement. The ingredients are the number of simulation particles
N = n3

p, where np is the number of particles per dimension; the time to solution, t, measured per time step;
and separate runs performed for the gravity and hydro versions of HACC. With this information, the ExaSky
FOM is defined as:

FOMExaSky =

√(
n3
p

t

)
grav

(
n3
p

t

)
hydro

. (14)

As discussed, the FOM does not include subgrid models because these are continuously evolving and take up
only 10–20 % of compute time, as well as because the time step size depends on the included subgrid model
physics. The current FOM setup and measurements are the same as for the final challenge problem; the test
size and attained performance will increase on the final exascale systems.

The FOM baseline was established on Theta, a KNL system at ALCF, by running HACC and CRK-HACC
on 3072 nodes. The FOM was then measured by running the two codes on Summit at the OLCF on 4096 nodes.
In 2019, the FOM ratio was 23.72. In 2020, because of improvements on the hydro solver implementation
for GPUs by a factor of about 9×, the FOM ratio increased to 72.25, meaning that our effort has already
achieved the target ratio of 50. We expect further improvements on the FOM in the coming year, but our
focus will be mostly on adding more physics in the subgrid models.
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5.2.4 ExaSky: Progress on Early and Pre-Exascale Hardware

Performance on Summit

The GPU implementation within HACC was ported from OpenCL to CUDA to better optimize performance.
We restructured the code memory to use fundamental vector data types, which is important for achieving
high memory bandwidth utilization on GPUs. HACC uses all six GPUs per node with each allocated to one
MPI rank.

A new extreme-scale simulation called Farpoint was performed on Summit in 2020. This simulation was
supported by an ALCC award and was run with ∼2 trillion particles. The box size was 1 Gpc/h with a
particle mass of ∼5× 107 solar masses. This is a very high mass resolution for such a large simulation box
and is challenging for the code and analysis tools. This simulation provided an excellent opportunity to
analyze the performance and load-balancing of the time-stepper; analyze the performance of and finalize the
implementation of CosmoTools, the HACC analysis framework; and implement the final improvements to
our I/O strategy. To run Farpoint effectively on Summit, we implemented a significant in situ analysis suite
within CosmoTools. Improvements included a speedup of the halo finder by using GPUs and a new threaded
implementation (10× speedup) and added additional tools (e.g., lightcone construction) and properties (e.g.,
each halo in the simulation now has 78 separate properties). In many ways, the Farpoint run functioned as
an early test bed for running the challenge problem.

In conclusion, we demonstrated excellent performance and scaling for the gravity-only version of HACC
on Summit, resulting in four complete science runs on 4096 nodes each. The Farpoint simulation has a
higher mass resolution than the challenge problem and provided the opportunity to stress test HACC and
CosmoTools, which allowed us to identify and fix all relevant bottlenecks. This particular line of development
for HACC on Summit is now complete.

Regarding CRK-HACC, we have a new implementation of the CRK-SPH solver in CUDA by using a
hybrid algorithm based on our fast P3M gravity implementation. The simulation domain is decomposed
into independent subvolumes that reside and evolve on the GPU, avoiding transfer latencies to the host.
These subvolumes can be distributed across the entire machine to significantly improve load-balancing. The
interaction trees are flattened to only interact with base leaves, simplifying the data structures and associated
indexing; the high memory bandwidth of the GPU for contiguous data overcomes the efficiency loss from
discarding tree levels. As a result of these improvements, we attained a 9× performance enhancement.
Subgrid model implementation is proceeding quickly; all subgrid models were refined and implemented in the
new GPU hybrid solver. These include radiative cooling, star formation and supernova feedback, and AGN
feedback.

Next Steps

The next steps involve focused work on porting the full set of performance-sensitive kernels to the pre-
exascale test beds. We will also be performing more at-scale runs on systems at ALCF (Polaris) and NERSC
(Perlmutter, where both HACC and Nyx are NERSC Exascale Science Applications Program (NESAP) codes).
The main priorities for HACC are: (1) efficiently implementing the hydro kernels and (2) implementing the
full suite of subgrid models. There are several other important activities for running the challenge problems
that relate to I/O, in situ analysis, data reduction, resilience, and comparative visualization, but progress
on these is unlikely to be bottlenecked by performance issues on GPUs. Nyx development to higher AMR
levels and verification tests against HACC are two important overall goals for ExaSky. The first stage of
verification tests across the two codes has gone well, as described in milestone reports, and we aim to focus
on achieving sub-percent agreement on certain metrics.

5.3 EQSIM

Large earthquakes present a significant risk around the world and are a large issue across the DOE mission
space ranging from the safety of DOE’s own inventory of one-of-a-kind mission-critical facilities to all major
US energy systems (e.g., electric/gas distribution systems, renewable energy production facilities, nuclear
power plants). Beyond the DOE enterprise, addressing earthquake risk, both from the standpoint of life
safety and damage/economic impact, is a significant societal challenge for virtually every element of the
built environment, including transportation, health, data/commerce, and all urban infrastructure. The

Exascale Computing Project (ECP) 100 ECP-U-AD-RPT 2021 00208



tremendous developments that occur in HPC, data collection, and data exploitation can help advance
earthquake hazard and risk assessments. As computational power increases, the reliance on simplifying
idealizations, approximations, and sparse empirical data can diminish, and attention can be focused on dealing
with the fundamental physics uncertainties in earthquake processes. Regional-scale ground motion simulations
are becoming computationally feasible, and simulation models that connect the domains of seismology and
geotechnical and structural engineering are becoming feasible.

The EQSIM application development project focuses on creating an unprecedented computational tool
set and workflow for earthquake hazard and risk assessment. Starting with a set of the existing codes—SW4,
a fourth-order, 3D seismic wave propagation model; NEVADA, a nonlinear, finite displacement program
for building earthquake response; and ESSI, a nonlinear finite-element program for coupled soil-structure
interaction—EQSIM is building an end-to-end capability to simulate from the fault rupture to surface ground
motions (earthquake hazard) and—ultimately—infrastructure response (earthquake risk). The ultimate goal
of EQSIM development is to remove computational limitations as a barrier to scientific exploration and
understanding of earthquake phenomenology, as wells as to practical earthquake hazard and risk assessments.

5.3.1 EQSIM: Science Challenge Problem Description

Traditional earthquake hazard and risk assessments for critical facilities have relied on empirically based
approaches that use historical earthquake ground motions from many different locations to estimate future
earthquake ground motions at a specific site of interest. Because ground motions for a particular site are
strongly influenced by the physics of the specific earthquake processes, including the fault rupture mechanics
seismic wave propagation through a heterogeneous medium and site response at the location of a particular
facility, earthquake ground motions are very complex with significant spatial variation in frequency content
and amplitude. The homogenization of many disparate records in traditional empirically based ground
motion estimates cannot fully capture the complex site-specificity of ground motion. Over the last decade,
interest in using advanced simulations to characterize earthquake ground motions (earthquake hazard) and
infrastructure response (earthquake risk) has accelerated significantly. However, the extreme computational
demands required to execute hazard and risk simulations at regional scale have been prohibitive. One
fundamental objective of the EQSIM AD project is to advance regional-scale ground motion simulation
capabilities from the historical computationally limited frequency range of 0–2 Hz to the frequency range of
interest for a breadth of engineered infrastructure of 0–10 Hz. Another fundamental objective of this project is
to implement an HPC framework and workflow that directly couples earthquake hazard and risk assessments
through an end-to-end simulation framework that extends from earthquake rupture to structural response,
thereby capturing the complexities of interaction between incident seismic waves and infrastructure systems.

To achieve the overall goals, two fundamental challenges must be addressed. First is the ability to
effectively execute regional-scale forward ground motion simulations at unprecedented frequency resolution
with much larger, much faster models. Achieving fast earthquake simulation times is essential for allowing
the necessary parametric variations needed to span critical problem parameters (e.g., multiple fault rupture
scenarios). Second, as the ability to compute at higher frequencies progresses, there will be a need for better
characterization of subsurface geologic structures at increasingly fine scales; thus, a companion schema for
representing fine-scale geologic heterogeneities in massive computational models must be developed. To
evaluate regional-scale simulations and assess progress on the application developments of this project, a
representative large regional-scale model of the San Francisco Bay Area (SFBA) was created. This model
includes all the necessary geophysics modeling features, such as 3D geology, earth surface topography, material
attenuation, nonreflecting boundaries, and fault rupture models. For a 10 Hz simulation, the computational
domain includes approximately 203 billion grid points in the finite difference domain. The SFBA model
provides the basis for testing and evaluating advanced physics algorithms and computational implementations.
Challenge problem details are given in Table 43.

5.3.2 EQSIM: KPP Stretch Goal

Ultimately, soft near-surface sediments can exhibit nonlinear softening behavior under strong earthquake
ground motions. The representation of soil nonlinearity can be approximated in several ways (e.g., a
series of equivalent linear simulations that progressively modify soil properties); however, it would be
desirable to directly model the localized nonlinearity that can occur in near-surface sediments. This is a very
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Table 43: EQSIM challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and asso-
ciated models

Earthquake simulations, including representative fault rupture mechan-
ics, wave propagation through heterogenous 3D geologic structure, and
appropriate coupling between regional geophysics and local soil/structure
models.

Numerical approach, algo-
rithms

Geophysics simulations will be executed with a fourth-order, summation-
by-parts finite difference program (SW4) that will require extensive
advancement to achieve ground motion simulation goals. Infrastructure
simulations will be based on appropriate coupling of regional-scale geo-
physics simulations with local soil-structure models.

Simulation details: problem
size, complexity, geometry, and
so on

Regional-scale simulations will typically encompass a large urban region
surrounding the urban environments of interest and the regional earth-
quake faults (sources) of interest. A representative model for the SFBA
was developed with a finite difference domain, including on the order of
200 billion grid points for high-frequency resolution simulations.

Demonstration calculation re-
quirements

The EQSIM science demonstration runs, which are performed annually
in the project milestone plan to establish current application FOM, will
revolve around the SFBA model with a simulation of a representative
M = 7 earthquake on the Hayward fault and a simulation of a cor-
responding 90–120 s of earthquake motions. These runs measure the
project’s annual progress toward the exascale challenge problem.

Resource requirements to run
demonstration calculation

Based on the results to date and the outlined objectives, EQSIM is
estimated to require ∼80–90 % with total integrated wallclock machine
time usage on the order of 90–150 h for one earthquake scenario simulation.
One earthquake realization will need 3–5 h.
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computationally challenging problem and would be a stretch goal for EQSIM, depending on overall progress
and performance on Exascale platforms.

5.3.3 EQSIM: Figure of Merit

The EQSIM project has established an application FOM that simply and clearly expresses the computational
and science goals of the overall effort. The FOM reflects the fact that the objective is to achieve high
frequency simulations in the shortest possible wallclock time. The FOM is executed in reference to the
frequency resolution and execution time of the regional scale SFBA model and reflects the fact that doubling
the frequency resolved in the ground motion simulations requires essentially 16 times the computational
effort,3 and thus computational effort varies as frequency resolved to the fourth power. The initial application
FOM was originally computed as:

FOM =
f4

max

wallclock time× 7.6
, (15)

where fmax is the highest frequency (Hertz) resolved in the regional ground motion simulation, the wallclock
time (hours) is for one full rupture scenario simulation for a large earthquake (typically simulating on the
order of 90 s of physical earthquake rupture and subsequent wave propagation), and 7.6 is a normalization
factor so that the application is baselined to a FOM of 1.0 in the first regional scale simulation performed
with the SW4 application at the start of the project with a Vsmin = 500 m/s in the regional model.

FOM Update

As work progressed with the performance evaluations on the regional scale model, it became apparent that
it would also be desirable to explicitly reflect the dependency on the minimum geologic shear wave velocity
included in the regional model because the model grid discretization is dependent on the minimum shear
wave velocity in the model. Additionally, regional simulations illustrate that to achieve realistic simulations
of risk, it would be necessary to reduce Vsmin below 500 m/s to reflect the soft sediments on the bay margins
of the SFBA model. Thus, the final application FOM is defined as:

FOM =
f4

max

wallclock time× 7.6

( 500

Vsmin

)4

, (16)

where Vsmin is the smallest geologic shear wave speed included in the computational model (m/s), typically
associated with near-surface soft sediments. The current FOM measurement from September 2020 on Summit
is 189.

5.3.4 EQSIM: Progress on Early and Pre-Exascale Hardware

Performance on Summit

EQSIM successfully transitioned to Summit in FY19 and continued to make improvements that pushed
performance boundaries in FY20 with the completion and implementation of several advanced capabilities,
including:

• the development of mesh refinement for the near-surface, curvilinear portion of the SW4 geophysics
code computational grid, including extensive testing to ensure the underlying fourth-order accuracy of
SW4 was maintained and that the earthquake fault-rupture source crossing the depth of the curvilinear
mesh was accurately represented;

• enhancements to the EQSIM workflow, including automating the coupling of regional geophysics wave
propagation simulations to local engineering models of soil/building systems through the domain
reduction method and the creation of a workflow to allow for the automated simulation of multiple
earthquake fault rupture scenarios in a single parallel computation;

3Doubling the frequency resolution of the model requires reducing the mode grid size 2× in each of the three directions and
halving the integration time step size, resulting in a 16× computational increase.
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Figure 47: Extent of the SFBA regional model (left). Historical regional
simulation performance before the EQSIM ECP project (upper left red box) and
the EQSIM exascale goal of 10 Hz simulations in 3–5 h wallclock time (lower red
box).

• extensive accuracy and performance testing of geophysics/engineering code coupling to link the fault-
to-structure workflow, which included the first incorporation of nonlinear models of soft near-surface
sedimentary soils in support of the EQSIM stretch goal of representation of nonlinear soil response;

• improvements to parallel I/O that provide more efficient data storage and processing based on the use
of HDF5 data containers, which was particularly important to the cross-domain coupling of geophysics
and engineering codes;

• the incorporation of all the aforementioned advancements in the RAJA version of SW4 for execution
readiness on GPU platforms.

EQSIM continues to highly leverage ECP S&T project developments, including RAJA, to expedite the
transition of all new capabilities to GPU platforms, ExaIO to improve I/O and data management capabilities,
and—for the first time—Alpine/ZFP to develop data compression capabilities that will be required to fully
realize the potential of fault-to-structure simulation capabilities.

The EQSIM framework performance is measured relative to a regional-scale simulation of a magnitude 7
earthquake on the Hayward fault in the EQSIM SFBA regional model, as shown in Fig 47. The ultimate
EQSIM exascale goal is the ability to execute regional end-to-end simulations at a frequency resolution
relevant to engineering structures, resulting in a target frequency of an unprecedented 10 Hz. Figure 48 and
Table 44 illustrate the progress to date, starting with the first regional simulation of an M7 event at the
start of the EQSIM project in 2017 to the best performance achieved on Summit in FY19 (point E) and
most recently on Summit in September 2020 (point F). The performance advancements were achieved first
through a combination of algorithm enhancements and code optimization for specific compute platforms
(progress from point A to point D) and then through the transition to the Summit GPU-based system
that provided a substantial performance boost (progress from point D to Point E) and finally due to the
breakthrough completion of mesh refinement in the curvilinear grid of SW4 (progress from point E to point
F). The corresponding increase in the EQSIM FOM is similarly illustrated in Fig. 48 in which the FOM has
progressed from an FOM of 1 for the first regional scale simulations to an FOM of 189 in the most recent
September 2020 performance assessment. The performance increases achieved from successfully moving to the
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Figure 48: Performance increases realized since the start of the EQSIM project,
including best FY19 performance (point E) and best FY20 performance (point
F) on Summit for a minimum model shear wave velocity (Vs min ) of 500 m/s.

Figure 49: FOM increases realized since the inception of the EQSIM project,
including the best FOM achieved in FY19 (point E) and FY20 (point F) on Sum-
mit. FOM values are the actual achieved run performance, not the performance
extrapolated to the use of the full computer.
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Table 44: Progression of EQSIM ground motion simulations with SW4.

Benchmark
simulation
(platform)

Code attributes
Frequency
resolution

(Hz)

Number of
compute nodes

wallclock
time
(h)

FOM

A
(Cori)

Initial run of SW4
ported to Cori

3.67 2048 23.9 1.0

B
(Cori)

SW4 with optimized hybrid
MPI/OpenMP loops

4.17 6528 12.0 3.32

C
(Cori)

SW4 with Cartesian
mesh refinement

4.17 4000 6.0 6.63

D
(Cori)

SW4 using all of the
Cori computer

5.0
8192

(all of Cori)
9.2 8.95

E
(Summit)

Initial run of SW4 ported
to the Summit computer

10.0
1200

(1/4 of Summit)
19.9 66.2

F
(Summit)

Fall 2020 run of SW4
including enhanced I/O,

curvilinear, and Cartesian
mesh refinement

10.0
1024

(<1/4 of Summit)
6.9 189

Summit platform have been substantial, as illustrated in Fig. 48 and 49. If similar increases can be realized
from the transition to exascale systems, then an unprecedented and transformational level of earthquake
simulation performance will be achievable.

The performance increases illustrated in Fig. 48 are relative to a minimum model shear wave velocity
of 500 m/s, which is a typical cutoff frequency used in historical simulations. Also, based on SFBA model
parametric studies that have been performed, a minimum shear wave velocity of at least 250 m/s clearly must
be achieved to fully represent the ground motions for soft sediment regions that surround the San Francisco
Bay and thus the associated risk to infrastructure. This will require significant additional computational
performance increases on exascale platforms, as discussed in the next section

Next Steps

Now that the significant multiyear task of developing and implementing mesh refinement in the curvilinear
grid of SW4 is complete, the last main performance-enhancing algorithm for forward earthquake simulations
has been accomplished. In 2021, several workflow improvements remain, including the full implementation of
data compression to allow for the practical storage of ground motions from an entire near-surface volume
of a regional domain. Compression testing performed in 2020 indicated that a very large reduction in data
size can be achieved with the ZFP libraries (i.e. a reduction in stored data from 73 to 0.151 TB). This
will be essential for fully realizing the ability to execute strong-coupling between regional geophysics and
local engineering models throughout the regional domain on demand and fully parallelizing the local soil
island/building simulations. Using the substantial performance increases achieved in 2020, the first end-to-end
simulations for the SFBA at 10 Hz resolution will be performed for the annual performance assessment in
2021. Additional work on the advancement of full waveform inversions to allow for the use of historical
measured small earthquake data to improve regional geophysics models will continue in 2021.

In terms of continued progress toward exascale goals, it will be necessary to achieve regional simulations
with a lower Vsmin in the regional model. Preliminary tests with a Vsmin of 250 m/s indicated a substantial
increase in computational effort with the reduction of Vsmin from 500 to 250 m/s, as shown in Fig. 50. The
achievement of fast regional simulations at 250 m/s will require exascale platforms.
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Figure 50: Preliminary exploration of SFBA regional simulations with Vs min

lowered to 250 m/s; point 2 indicates a 10 Hz SFBA simulation with Vs min =
500 m/s, and point 3 indicates a 10 Hz SFBA simulation with Vs min = 250 m/s.

5.4 Subsurface

Understanding and predicting reservoir-scale behavior affected by the long-term integrity of the hundreds of
thousands of deep wells that penetrate the subsurface for resource use are urgent challenges. The performance
of a wellbore hinges on the behavior of very thin interface features that control the leakage of fluids along the
boundary between the well casing and cement. Similarly, the leakage of buoyant fluids (e.g., CO2) through
caprocks might be controlled by micron-scale asperities in fracture networks that are themselves subject
to geomechanical and geochemical modification. At the reservoir or field scale (∼1–10 km domain size),
multiphase flow and reactions in fractured porous media are typically modeled by using continuum models
that use averaged quantities and bulk parameters that do not fully take into account thermal-hydraulic-
chemical-mechanical (THCM)-related heterogeneity at different spatial and temporal scales. A more rigorous
treatment is to resolve the pore-scale (0.1–10 µm) physical and geochemical heterogeneities in wellbores and
fractures to improve the ability to predict the evolution of these features when subjected to geomechanical and
geochemical stressors. The ultimate challenge is to integrate the complex multiphysics processes that occur
at multiple scales, from the micro to the kilometer scale in a high-resolution reservoir simulator. Meeting this
challenge requires the use of innovative multiscale coupling approaches and exascale computing.

The Subsurface project addresses this exascale computing challenge by coupling two mature code bases:
(1) Chombo-Crunch, developed at LBNL, which currently handles Navier-Stokes and Darcy flow coupled
to multicomponent geochemical reaction networks, and (2) the GEOSX code, developed at LLNL, which
handles geomechanical deformation and fracture+Darcy flow at a variety of scales.

A science challenge problem was developed that focuses on the evolution of a single fracture in wellbore
cement, beginning at Stage 1 with diffusion-controlled reaction and weakening of the cement that leads to
fracturing. The propagation of the fracture as a result of further chemical reaction and fluid pressure-driven
deformation is simulated with 1 µm resolution within the fracture and is coupled to a coarser resolution
(10 µm) representation of the porous cement adjacent to the evolving fracture. The resulting challenge
problem is estimated to require 1 trillion grid cells with 16 trillion DOF once the hydraulic, mechanical,
and chemical variables are included. Based on prior experiments and modeling, the challenge problem is
estimated to extend for 10 d of simulation to capture the evolving fracture and associated reaction fronts.
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5.4.1 Subsurface: Science Challenge Problem Description

There are a wide range of processes that occur in the subsurface that involve the evolution of fractures,
including opening and closing due to some combination of mechanical and chemical stresses. In this project,
the team focuses on the failure of a wellbore for CO2 sequestration in saline reservoirs as the single science
challenge problem with the consideration of a wellbore segment of up to 100 m and times up to 1 year.
Wells are considered to be high-risk pathways for fluid leakage from geologic CO2 storage reservoirs because
breaches in this engineered system could connect the reservoir to groundwater resources and the atmosphere.
The geologic carbon storage community has raised further concerns about wellbore stability because acidic
fluids in the CO2 storage reservoir, alkaline cement meant to isolate the reservoir fluids from the overlying
strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storing
CO2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards.

The wellbore stability problem involves four physical processes that must be considered to model the
challenge problem.

1. Geochemically driven fracture initiation: Initial crack growth near the wellbore occurs as a result of
chemical corrosion when acidic CO2 contacts alkaline cement. In these zones, enhanced transport rates
contribute to chemical dissolution and weakening of the cement. Transport is expected to be dominated
by diffusion due to the initially low permeability of the cement, leading to a compact reaction front in
the porous cement.

2. Mechanically driven fracture propagation: This process involves the growth of a fracture based on the
stress/deformation field near the fracture tip. A fracture criterion is given for the rock; fracturing will
occur when this criterion has been exceeded. In the context of the challenge problem, this process is
driven by the fluid pressure within the fracture, which concentrates stress at the fracture tip.

3. Fracture sealing: This process is driven by reactive flow in the open fracture and can include: (1) the
closure of flow pathways by the mechanical compression of the asperities (i.e., collapse of fracture pillars)
or (2) the deposition of minerals in the fractures due to their supersaturation.

4. Chemically induced fracture growth: This process is also driven by reactive flow in the open fracture
and can include: (1) sustained fracture growth by dissolution of the cement, potentially leading to
“wormholing,” and (2) increased stress due to the deposition of minerals in the fracture (i.e., mineral
precipitation-induced fracturing). The second phenomenon can occur where the Gibbs free energy for
mineral precipitation exceeds the strength of the rock.

Subsurface energy applications, including the science challenge problem, are modeled at a large scale
known as the field or reservoir scale, O(0.1–1 km) and O(10 y), with spatial resolution as fine as 1 mm
locally (e.g., near the wellbore) and time steps of minutes to hours for computationally tractable simulations.
Problems are typically analyzed with limited or no coupling between mechanical, hydraulic, and chemical
processes that control fracture initiation and growth. Furthermore, the equations of motion are based on an
effective medium, parameterizing subgrid flow, and transport processes as bulk properties (e.g., permeability
and reaction rate) that do not represent the true tortuosity of flow paths or the reactive surface area of the
material.

In contrast to the conventional treatment of wellbore failure, the accurate prediction of fracture evolution
depends on the microscale resolution of fracture asperities (i.e., pillars) controlling permeability and chemical
reactivity. In particular, high resolution is needed in the vicinity of the fracture tip where chemical corrosion
combines with the focused stress field to propagate the fracture. As in the classical subcritical fracture growth
literature [34], the overall rate of fracture growth in these zones is controlled by coupled processes that occurs
at the fracture tip.

Microscale resolution is also needed to accurately predict fracture permeability since real rough fractures
are typically held open by asperities (i.e., pillars) of this scale. Chemical corrosion (i.e., dissolution) or
mechanical corrosion (i.e., pressure solution) of these asperities occurs at the same micron scale. Chemical
dissolution might actually have two opposing effects: (1) the formation of channels or wormholes in the
fracture plan that focus flow, thus accelerating the opening of the fracture, or (2) the dissolution of fracture
asperities, thus allowing the fracture to close under the ambient confining stress. The overall domain size of
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Table 45: Subsurface challenge problem details.

Functional requirement Minimum criteria

Modeled physics Coupled flow, multicomponent reactive transport, and fracture
mechanics and deformation

Numerical approach,
algorithms

Chombo-Crunch: AMR, finite volume embedded boundary method for
flow and transport, level set
GEOSX: finite element solid mechanics

Domain size 1 cm3 (e.g., 10 cm× 1 cm× 0.1 cm) near fracture tip

Grid resolution 1 µm
midrule Number of grid cells 1 trillion

Degrees of freedom 16 trillion (six flow/mechanical variables, 10 solute transport variables)

Domain decomposition and
load balancing

32,768 grid cells per box per core

Resource requirement to run
exascale challenge problem
demonstration (based on
current architecture)

475,000 Cori KNL nodes (50× more than available); 80,000 Summit
nodes

Simulation time for exascale
challenge computation

10 days of simulated diffusion-reaction in Portland cement,
reaction-induced fracture evolution ⇒ 8640 global time steps ⇒ 4 weeks
of machine time

the fracture tip, O(cm), is important because the resulting fractures can become the conduits for reactive
flow (CO2 saturated brine) in contact with highly reactive alkaline cement, potentially leading to wormholing
that causes more rapid wellbore cement failure and “runaway” borehole failure.

For the exascale challenge problem, one fracture tip with pore-scale resolution is tracked. The localized
subdomain needed to resolve reactive transport processes at microscale resolution during fracture propagation is
a domain size up to 10 cm (in the length of the wellbore)×1 cm (along an azimuth in the cement annulus)×1 mm
(in the radial direction) with 1 µm resolution. This domain size is assumed to be the minimum domain needed
to capture coupled reactive transport and mechanics effects in a fracture (e.g., pillar collapse). Up to 10 cm
is an adequate length with respect to the aspect ratio of the fracture. In the cross section of the fracture,
1 cm in the azimuthal direction accounts for the length scale for an REV. A domain on the order of 1 mm in
the radial direction is required to capture diffusive transport over long timescales.

The resolution of 1 µm is required to explicitly resolve the reactive surface area of reacting materials in
the cement fill of the wellbore. This domain-to-grid resolution ratio at the pore scale conservatively requires
the equivalent of 30,000,000 KNL cores (475,000 KNL nodes) based on petascale Chombo-Crunch domain
decomposition and load-balancing sweet spot of one 323 box of cells per core. With a current benchmark
for petascale capability of 600,000 KNL cores (9000 nodes) for 24 nm resolution of a 100 µm block of shale,
the challenge problem is well into the regime of exascale resources because it is 50× the current capability.
Resources based on Summit Volta GPUs can also be estimated. Because Summit has the same HBM as Cori
KNL (16 GB HBM) and six cards per GPU node, the requirement would be 80,000 Summit nodes. The
problem specifications are summarized in Table 45.

5.4.2 Subsurface: KPP Stretch Goal

The stretch problem focuses on simulating 100 m of a single wellbore with proposed cell resolutions down
to 2 mm. The specifications for this problem are listed in Table 46. The wellbore scale component of this
problem is a GEOSX simulation that uses continuum/Darcy scale assumptions with coupled physics that
comprise solid mechanics, multicomponent multiphase flow, and fracture mechanics. Although the wellbore
scale (GEOSX) component of the stretch challenge problem will be developed independently of the base
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Table 46: Subsurface stretch problem details.

Functional requirement Specification

Modeled physics Fracture mechanics, multiphase multicomponent flow, reactive
transport/geochemistry

Numerical approach,
algorithms

GEOSX: finite element solid mechanics with REV-based upscaling from
Chombo-Crunch base challenge problem simulation data

Domain size 100 m× 0.8 m× 0.1 m high-resolution zone

Grid resolution 2 mm resolution

Number of grid cells ∼800 million elements

DOF ∼10 billion DOF

Domain decomposition and
load balancing

Two ranks per node

Resource requirement to run
stretch problem (based on
current architecture)

1600 Summit nodes

Simulation time for stretch
goal

6 months of simulated time; execution time depends on the performance
of the team’s linear solver strategy

challenge problem, it is intended that the capabilities from the base challenge problem will be coupled with
the wellbore scale through methods developed within the project (ADSE05-21).

5.4.3 Subsurface: Capability Plan

To achieve the target simulation of the exascale challenge problem on Frontier by the end of the project,
development is divided into two tracks: multiphysics capability demonstration and performance portability
software for accelerator-based machines. The first peg point between the two tracks was September 2020 when
a multiphysics capability demonstration was targeted for the end of FY20 as a milestone but is essentially a
milepost, and underlying software portability to GPUs for Chombo-Crunch and GEOSX was also pegged
at the end of FY20 as a milestone. Performance portability for each new architecture thereafter precedes
multiphysics capability demonstration on the architecture. Multiphysics capability on a given architecture
depends on the performance portability of Chombo-Crunch and GEOSX individually on the architecture
before a full multiphysics coupled code demonstration.

1. September 2020: Multiphysics capability demonstration. Subsurface is developing a multiphysics capa-
bility that couples Chombo-Crunch flow and reactive transport with GEOSX mechanics to model the
fracture evolution of CO2 invasion in wellbore cement. In this milepost, experimental data were used to
validate the coupling approach that we propose to use to solve the challenge problem. We modeled the
open cement fracture fabricated for experiments in Walsh, Mason, Frane, and Carroll [35]. The domain
is approximately 3.5 cm long and 1.5 cm× 1.5 cm in the cross section. We simulated the problem at
the pore scale by using Chombo-Crunch with approximately 5 µm resolution. GEOSX simulates the
mechanical deformation as a whole on a similar size domain with 100 µm resolution. The domain-to-
resolution ratio for this problem is a necessary and intermediate step toward the exascale challenge
problem of 10 cm× 1 cm× 0.1 cm with 1 µm resolution. The algorithmic and modeling components of
this milepost are represented in the stories of Jira Epic 98 (milestone ADSE05-20).

(a) Chombo-Crunch continuum Darcy-scale diffusion-reaction capability with variable coefficient
porosity.

(b) Pore-continuum coupling with fracture evolution.

(c) Representation of reaction-induced solid mass modifications in GEOSX.
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(d) Experimental validation of wellbore cement geochemical reactions [Li:2017].

(e) Experimental validation of wellbore cement alteration by CO2-rich brine [35].

2. September 2021: GPU-based multiphysics capability demonstration on Summit. This milepost extends
to a pre-exascale GPU-based machine (i.e., Summit). We will use the fully coupled code, Chombo-
Crunch, implemented in Chombo4, which is based on the performance portability back end EBProto.

3. June 2022: Capabilities for the simulation of a wellbore problem in GEOSX.

4. June 2023: Performant multiphysics simulation of challenge problem on Frontier. Subsurface is a sim-
ulation of single-fracture propagating in wellbore cement due to an attack of CO2-saturated fluid. We
will track a high-resolution zone 10 cm× 1 cm× 0.1 cm (= 1 cm3) with 1 µm resolution in the fracture
(Chombo-Crunch) and 100 µm resolution of the entire cubic centimeter volume (GEOSX). This domain
size is the minimum domain needed to capture the effects of coupled flow, reactive transport, and
mechanics in a fracture.

5.4.4 Subsurface: Progress on Early and Pre-Exascale Hardware

The performance portability of Chombo-Crunch on Summit GPUs is being accomplished by implementing
the C++ library called Proto. Proto is an abstraction layer that provides a high-level representation for
discretization operators on data defined on a single rectangle, replacing the low-level Fortran/C-subset
approach currently used. In Proto, the principal data type (i.e., class) is a collection of values defined at each
point in a rectangular patch (BoxData). BoxData corresponds to a multidimensional rectangular array but
with the rectangular patch corresponding to the indices over which the array is defined as a separate data
type, similar to the FArrayBox class in Chombo and BoxLib. The main change from the previous approach
in Chombo is that all the performance-critical discretization methods that were represented as low-level loops
are now represented in applications code as compositions of two high-level operators applied to BoxDatas.

• Application of stencils (apply). In Proto, stencils are first-class objects that are separately defined and
archived.

• Pointwise applications of user-defined functions applied to the values of the BoxData at each point in
the rectangular patch (forall).

Furthermore, Proto is not limited to Chombo-based applications.
However, Chombo-Crunch is an application code that relies heavily on embedded boundary, finite

volume discretizations of operations and data. EB calculations are primarily used to compute solutions on
complex geometries, but they also provide a general approach to tracking sharp interfaces, such as those by
multiple media (e.g., multiphase, multimodel). Because the nature of these algorithms is semistructured, EB
calculations require more complex data structures. The EBProto performance portability layer extension to
non-EB Proto is designed to meet this complexity.

• The stencils, which vary from point to point on cut cells, are computed on the host and evaluated on
the device.

• Data live on a graph structure that can be more complex than a simple array. These data live on the
device and require complex indexing.

• Structures are built for fast stencil evaluation and pointwise function evaluation.

• We provide a dictionary of stencil implementations that users can easily accessed. Most users will never
have to see the graph or moment information.

Our performance engineering strategy is to extend the non-EB Proto performance engineering optimizations
to EBProto. Because Proto has no EB capability, EBProto is an extension of Proto that requires new
data holders and geometry generation in Chombo4. We extend Proto::forall and Proto::stencil to
EB. Furthermore, for EBProto to support Chombo-based application codes, such as Chombo-Crunch, a
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Figure 51: Comparison of host-to-host strategy vs. device-to-device strategy.

Table 47: Weak-scaling performance optimizations on Summit. All times are
measured in seconds.

Six GPUs, one node 3072 GPUs, 512 nodes

Total time (exchange) Total time (exchange)

Baseline 1208 (957) 1304 (947)
Device-to-device 304 (43) 398 (91)
Other optimizations 115 (30) 180 (70)

Proto/EBProto-enabled version of Chombo, called Chombo4, was developed. The next section reports the
performance results for benchmarks on GPU architectures.

Performance on Summit

We identified several performance bottlenecks on Summit along with our solution outcome.

• We replaced the exchange of ghost data mediated by the CPU with functionality that is completely
resident on the GPU, gaining more than a 10× improvement in performance of exchange. A schematic
is shown in Fig. 51.

• Integer stencil offset calculations on GPU are slow. We precomputed offsets on CPU and bundled them
in kernel launch payload.

• nvcc does not inline pointwise functions on the device. We wrapped them in a class that enables
optimization analogous to inlining.

• We replaced Thrust library calls with native implementations for arithmetic operations on arrays and
use special syntax for accumulating norms to minimize barrier synchronizations on the device.

• We minimized kernel launch costs by fusion, which are not visible to the application.

The weak-scaling performance from these optimizations are shown in Table 47.
The following rooflines were generated with the Chombo4::Euler example and nsight-compute. We observe

the following in Table 48 and Figs. 52 to 55:

• the whole application is memory-bound (Fig. 52);

• three main kernels account for ∼67 % of the total time;

• kernels are memory-bound (Figs. 53 to 55); and

• the GFlops are two times higher for this simulation than in Table 48 because the patch size influences
the workload.
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Figure 52: Roofline of all kernels.

Figure 53: Hierarchical roofline of stencilIndexer kernel (all stencils together).

Table 48: Kernel performance information used to build rooflines. Data are
obtained from NSight Compute with the Chombo4/Euler example with eight
patches of 643 elements and one step. Here, AI is the arithmetic intensity.

Ratio (%) GFlops L1 AI L2 AI DRAM AI

Whole simulation (kernel only) 100 156.1513 0.1561 0.2183 0.2918
StencilIndexer (all stencils) 27.8 320.3305 0.1640 0.2765 0.5437
Indexer::getFlux 21.8 75.5640 0.0931 0.1231 0.1373
Indexer::upwindState 18.0 145.4033 0.1932 0.2302 0.2517
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Figure 54: Hierarchical roofline of indexer:getFlux.

Figure 55: Hierarchical roofline of indexer:unpwindState.
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Figure 56: Indexer (Forall): 98.2 GFLOPS ebkernel1.

EBHelmholtz benchmark The following rooflines in Figs. 56 to 59 were done with the applyHelmholtz test
and nsight-compute for our EBHelmholtz benchmark. The kernels—Indexer, indexer i, and StencilIndexer—
are memory-bounded. Regarding EBStencil, there are two issues for the poor performance: (1) no coalesced
memory access from noncontiguous memory (2) and the workload is too low to achieve decent performance.
EBProto will benefit greatly from the device-to-device strategy for the exchange used in Proto depicted in
Figs. 51 (work in progress).

5.5 E3SM-MMF

The goal of the Energy Exascale Earth System Model (E3SM)-MMF project is to develop a cloud-resolving
earth system model with the throughput necessary for multidecade, coupled high-resolution climate simulations.
This next-generation model could substantially reduce significant systematic errors in precipitation found
in current models due to its more realistic and explicit treatment of convective storms. Consequently, it
will improve the ability to assess regional impacts of climate change on the water cycle that directly affect
multiple sectors of US and global economies, especially agriculture and energy production. Current earth
system models possess a limited ability to model the complex interactions between the large-scale, mostly 2D
baroclinic atmospheric motions and the smaller scale 3D convective motions found in clouds and individual
storms. These motions and their interactions, to the first order, determine the spatial distributions and
characteristics of regional precipitation. Complexities include the microscale chemistry and physics of cloud
formation and the impacts of anthropogenic climate change on cloud formation. Properly resolving the key
processes involved in cloud formation requires resolution (grid spacing) on the order of 1 km in the atmosphere.
It is possible to run such resolution on today’s O(10) petascale computing systems but only at great expense
and for very short times (i.e., several simulated days). Running conventional climate models at this resolution,
for 100 y simulations, requires a 5000× increase in computing resources.

For exascale, the team thus considers a multiscale modeling framework (MMF) approach to cloud-resolving
modeling, often referred to as superparameterization, which offers significant opportunities for unprecedented
model skill improvement that has not yet been fully explored due to limited computing resources. This
project will integrate a cloud-resolving convective parameterization (i.e., superparameterization) into the
DOE E3SM by using the MMF and will explore its full potential to scientifically and computationally advance
climate simulation and prediction. The superparameterization will be designed to fully use GPU-accelerated
systems and will also involve refactoring and porting other key components of the E3SM model for GPU
systems. The acronym E3SM-MMF refers to the superparameterized version of the E3SM being developed

Exascale Computing Project (ECP) 115 ECP-U-AD-RPT 2021 00208



Figure 57: StencilIndexer: 531 GFLOPS ebkernel2.

Figure 58: AggStencil (EBSTencil): 14.77 GFLOPS ebkernel3.
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Figure 59: Indexer i (ebForall): 1308 GFLOPS ebkernel4.

under this ECP project.

5.5.1 E3SM-MMF: Science Challenge Problem Description

The overarching challenge problem is to develop an Earth system model with a fully weather-resolving
atmosphere and cloud-resolving superparameterization, an eddy-resolving ocean, and ice components, all
while obtaining the necessary throughput to run 10–100 member ensembles of 100 year simulations in less
than 1 calendar year.

The challenge problem size has several aspects. The first is to achieve cloud-resolving resolution in the
atmosphere superparameterization, which is defined as at least 1 km grid spacing in both horizontal and
vertical directions. The second is to achieve weather-resolving resolution in the global atmosphere model,
which is defined as 50–25 km average grid spacing in the horizontal directions with ∼1 km grid spacing in
the vertical directions—(the resolution of today’s global operational forecast models. The third is to achieve
an eddy-resolving ocean/ice model, which is defined as a minimum 18 km resolution in equatorial regions,
decreasing to 6 km in polar regions to capture the reduction in eddy size with decreasing Rossby radius of
deformation with O(100) levels in the vertical. The final aspect is to have the model throughput needed to
perform the simulation campaign of the challenge problem in the course of 1 calendar year on the exascale
Frontier system. The team’s minimum requirement (10 member ensemble of 100 y simulations) requires the
ability to run 1000 simulated years in 1 calendar year, which can be achieved with a throughput rate of 5
simulated-years-per-day (SYPD). Ideally, each ensemble member will run at 5 SYPD, but this throughput
can also be achieved if NX = 5, where N is the number of ensemble members that can run on the machine
simultaneously, and X is equal to the SYPD performance of each ensemble member.

The E3SM-MMF will be evaluated by using the E3SM water cycle metrics package, which is under
development by the E3SM project and will measure the ability of the model to simulate extreme storms
and coastal inundation. The accuracy requirement will be to obtain accuracy similar to or better than the
high-resolution E3SM model while running 50× faster, as measured by the FOM. Because of the large natural
variability and chaotic nature of atmospheric and ocean dynamics, a rigorous assessment of these metrics
requires large ensembles of century-length runs identified in the challenge problem, which require a large
INCITE-class computing allocation. The team’s challenge problem is a typical example of a simulation
campaign used for Earth system science studies. The demonstration calculation (Table 49) will use much
fewer resources and is designed to show that E3SM-MMF can achieve the computational performance and
stability needed to complete the challenge problem. The performance will be established with a suite of short
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Table 49: E3SM challenge problem details.

Functional requirement Minimum criteria

Physical phenomena and
associated models

E3SM-MMF is an Earth system model focused on simulating the
Earth’s water cycle. It is made up of physical models of the Earth’s
atmosphere, ocean, and land and sea ice.

Numerical approach,
algorithms

Finite elements, finite volumes, and finite difference running on
unstructured grids with multiscale coupling and an extensive suite of
subgrid parameterizations.

Simulation details: problem
size, complexity, geometry, and
so on

Weather-resolving atmosphere with a cloud-resolving
superparameterization coupled to eddy-resolving ocean and ice
components with the necessary throughput for 10–100 ensembles of 100
year simulations.

Demonstration calculation
requirements

Computational performance metrics require strong scaling benchmarks
out to the full machine size, using short simulations (5 simulated days,
∼O(5000) time steps).

Resource requirements to run
demonstration calculation

The full exascale machine for 12 h and 20% of the machine for 20 d.

5 d strong-scaling benchmark calculations, and the stability of the model will be established with a single
multiyear simulation.

5.5.2 E3SM-MMF: KPP Stretch Goal

The stretch goal is to develop an Earth system model with a fully cloud-resolving 3 km atmosphere component,
as well as an eddy-resolving ocean and ice components, all while obtaining 1.0 SYPD for a single ensemble
member on Frontier or Aurora. For the stretch goal, the team will use an E3SM configuration in which
the full atmosphere—not just the superparameterization—is run at a global 3 km cloud-resolving resolution.
This E3SM configuration currently serves as both a baseline to evaluate a cloud-resolving capability and
as a risk mitigation strategy if they are unable to obtain some aspects of a cloud-resolving model with the
superparameterization approach in the E3SM-MMF configuration.

5.5.3 E3SM-MMF: Figure of Merit

The E3SM-MMF’s project FOM is the throughput of a cloud-resolving Earth system model measured in
SYPD.

For the baseline, the team compares against the traditional E3SM model running at a global 3 km
resolution. Because it is currently impossible to run this resolution on Titan, benchmarks of the E3SM
high-resolution configuration (28 km) that run on 20% of Titan are used, and then these results are scaled
to 100% of Titan and to 3 km resolution. For the FOM speedup, the team will compare the baseline FOM
to the performance of the E3SM-MMF model that runs with a cloud-resolving convective parameterization
on Summit with GPU acceleration. This FOM speedup combines an algorithmic speedup from the MMF
approach with GPU acceleration. The cloud-resolving convective parameterization will be run at a resolution
of at least 3 km and potentially as fine as 1 km.

Throughput was measured in SYPD without I/O. I/O was excluded to simplify the benchmarking
procedures. The amount of I/O is very problem-dependent, and it typically varies from 10 to 50% of the
total cost of the model; thus, including I/O would not substantially impact the FOM. The team has tasks
focused on improving the I/O infrastructure, and these tasks measure their performance through I/O rate
benchmarks.

To estimate the throughput of the full Earth system model, two standardized benchmarks of simpler
configurations are used: an “F compset” and a “G compset.” The F compset isolates the performance of
the atmosphere and land components, and the G compset isolates the performance of the ocean and ice
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Table 50: E3SM-MMF FOM data

Model Machine Nodes FOM (SYPD) Speedup

Baseline Titan 2018/12 18 700 0.011 1
E3SM-MMF Titan 2018/9 2700 0.095 8.6
E3SM-MMF Summit 2019/2 1024 0.395 35
E3SM-MMF Summit 2020/6 1024 0.81 73

components. Benchmarking these components separately makes it much easier to collect strong-scaling data.
It is difficult to collect strong-scaling data for the full coupled system as for a given number of nodes; optimal
load balancing and processor layouts must be constructed. This is not difficult, but it is nontrivial and
time-consuming. Based on the performance data collected in F and G compsets, the team can get an excellent
estimate of the performance of the coupled system via

time-to-solution = 1.2×max(ocean time, atmosphere + ice time) . (17)

This formula is based on current data, which show that coupling between components adds 20% to the overall
cost, and on component concurrency (that atmosphere and ice model run sequentially with respect to each
other on the same nodes, while the ocean model runs concurrently on a different set of nodes).

FOM Update

Our baseline FOM was obtained on Titan. Our first benchmarks resulted in an FOM of 0.005 SYPD,
which was obtained on March 30, 2018. These were further improved on December 21, 2018, resulting in our
final baseline FOM of 0.011 SYPD. These were computed as described previously. In the G compset, the ice
component model obtained 6.88 SYPD, and the ocean model obtained 3.46 SYPD. For the atmosphere, we
ran an F compset at 27 km resolution (2.74 SYPD) on 5400 Titan nodes. This number was scaled to the full
Titan and to 3 km resolution, resulting in 0.013 SYPD. The end result was our baseline-coupled model FOM
of 0.011.

For the E3SM-MMF results, we have been collecting F compset performance numbers as we improve the
GPU acceleration and port to new hardware. By computing the FOM via these E3SM-MMF F compset
benchmarks and the existing G compset benchmarks, we obtained the data displayed in Table 50.

5.5.4 E3SM-MMF: Progress on Early and Pre-Exascale Hardware

Performance on Summit

Our performance work is focused on the atmosphere and MPAS ocean/ice components of the E3SM. For
the MPAS components, we are porting the original Fortran code to GPUs by using a Fortran/openACC model.
In 2020, we completed the port of several subcomponents and much of the necessary framework refactoring.
For the atmosphere component, we are only porting the key computational subcomponents, which include
SAM, the cloud-resolving super-parameterization, and RRTMGP, the radiation package. F-case atmosphere
simulations have been running well on Summit since its debut with our initial Fortran/openACC port of
SAM. In 2020, we started working to transition away from openACC to support both Frontier and Aurora.
We explored Fortran/OpenMP and a C++ approach. The OpenMP work has had many difficulties due to the
immaturity of OpenMP Fortran support. We obtained our best results by porting our computational kernels
into C++. For this work, we explored by using Kokkos but settled on YAKL, an internally written parallel
for loop abstraction layer that supports Fortran style arrays, making it easier to port existing Fortran code.
We completed the port of SAM into SAM++ and the port of RRTMGP into RRTMGP++ and integrated
SAM++ into E3SM-MMF. Our best results on Summit are obtained with the full E3SM-MMF atmosphere
model (F compset) running in a configuration with SAM++ via a 3D grid. This configuration has a relatively
small cost of radiation and can thus obtain excellent GPU speedups, even though we have not yet integrated
RRTMGP++ into E3SM-MMF. This model is currently being used for our science simulation campaign
supported by our 2020 INCITE allocation.
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Figure 60: Strong scaling of several configurations of the E3SM. The atmosphere
component performance, as measured in simulated-years-per-day, is plotted as
a function of the number of Summit nodes used. The MMF configurations are
run with a 75 km global mesh and 1 km superparameterization with either a
3D superparameterization (blue) or 2D superparameterization (red). We also
include a projection of the non-superparameterized model running at a global
3 km resolution (purple).

Strong scaling of the E3SM-MMF is shown in Fig. 60. The result shows several configurations of the
E3SM atmosphere running on Summit. Our main result for the E3SM-MMF with the 3D SAM++ is shown
in blue, the dashed lines show the performance of the model on the Summit CPUs, and the solid line show
the performance of the model when using the GPUs. The model obtains good scaling with a GPU speedup
of ∼ 15× per node, comparing six GPUS with two Power9s. When using a 2D SAM++, other aspects of the
mode dominate the performance, and we obtain minimal GPU acceleration (red curve). The purple curve
shows a projection of our baseline model, running with a global 3 km resolution. This projection is based on
the GPU port of the dynamical core. Based on those results, we project that the model will make excellent
use of the Summit GPUs but remain prohibitively expensive, requiring all of Summit to obtain 0.5 SYPD.

6. DATA ANALYTICS AND OPTIMIZATION APPLICATIONS

End State: Deliver comprehensive data-driven and science-based computational applications able
to provide, through effective exploitation of exascale HPC technologies, breakthrough solutions
that yield high-confidence insights and answers to challenges in a selected variety of DOE and
non-DOE US government agencies.

The data analytics and optimization (DAO) L3 area (Table 51) includes applications that do not rely
on approximate solutions to equations that state fundamental physical principles or reduced semiempirical
models. Instead, DAO applications exploit predictive capabilities that exploit modern data analysis and
ML techniques, complex combinatorial models of data interactions, and constrained, nonlinear algebraic
representations of complex systems. These applications target the mission space of DOE and other relevant
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Table 51: Summary of supported DAO L4 projects.

WBS
number

Short name Project short description KPP-X

2.2.4.02 ExaSGD Reliable and efficient planning of the power grid KPP-2

2.2.4.03 CANDLE Accelerate and translate cancer research KPP-1

2.2.4.04 ExaBiome Improve understanding of the microbiome KPP-2

2.2.4.05 ExaFEL Light source-enabled analysis of molecular structure KPP-2

federal agencies—such as the NIH, the NSF, NASA, and NOAA—identified as high priority per the National
Strategic Computing Initiative (NSCI). They include a broad range of application areas and techniques,
some of which are only recently coming into maturity in the context of high-end simulation. As such, they
represent greater risk but also significant potential for new discovery.

The principal goal of this activity is to develop ECP applications capable of delivering demonstrable
solutions to specific DAO challenge problems on the exascale systems. These applications must target science
and energy challenge problems within the mission space of the relevant agency. Another objective is to
educate, train, and inform DAO staff on the best practice approaches for exascale application development,
including an integration objective of demonstrating, for the DAO area, the vital role and return on investment
provided by predictive modeling in delivering on DAO strategic goals. An additional objective is to gather
requirements from the DAO applications to help guide the ST and hardware and integration (HI) R&D
activities.

6.1 ExaSGD

Energy delivery systems, such as the US national power grid, operate by maintaining balance between energy
supply and demand. Attacks via physical or cyber means and hazards on the grid can create an imbalance
between supply and demand, which can result in drops in voltage or frequency that can permanently damage
large and expensive components. To ensure safety and reliability, the grid must operate within narrow voltage
and frequency ranges.

Recovering from generation-load imbalance can be achieved by shedding load (i.e., deliberately allowing
some load to go unserved and creating a partial blackout) to preserve the functionality of the remainder of the
power grid. However, emerging technologies make power grids more complex and more controllable. Examples
include the increasing prevalence of cyber-enabled control and sensing, variable generation renewables (e.g.,
wind and solar), plug-in storage devices (e.g., electric vehicles), smart meters that can control load at a fine
granularity (e.g., throttling home appliances at times of peak demand), and other sensored elements that can
be controlled remotely. Today’s practice focuses primarily on a conventional load-shedding approach and as
such might miss more efficient strategies for dynamically achieving balance via a broader spectrum of grid
control techniques. The capability to discover more optimal configurations to recover from generation-load
imbalance will improve the national readiness to recover from a variety of hazards to the power grid.

6.1.1 ExaSGD: Science Challenge Problem Description

The ExaSGD challenge problem is to optimize the grid’s short-term response (e.g., 30 min per NERC operating
standards) to many potential under-frequency hazards due to physical and cyber threat scenarios by using
a high-fidelity grid model that includes generation, transmission, load, and cyber/control elements. The
ExaSGD team will compare the frequency recovery performance of a complex grid for different control
responses that involve smart devices, renewables, and advanced demand response technologies. This will
require complex high-fidelity analysis with many coupled optimal power flow computations. Each optimal
power flow calculation corresponds to a specific contingency/scenario. The solution of the overall problem—
stochastic security constrained optimal power flow—is the optimal operating point for the entire grid given
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Table 52: ExaSGD challenge problem details.

Functional requirement Minimum criteria

Models A nonlinear optimization model describing physical and control systems
for power grid operation.

Numerical methods Nonlinear optimization with equality and inequality constraints.

Problem size and complexity 105 optimization parameters.
103–105 “N− 1” and “N− k” contingencies.
103–105 stochastic scenarios.
Individual contingencies and stochastic scenarios are coupled through
the base problem (i.e., deterministic with no faults occurring) but not
directly to each other. One power grid model evaluation (e.g., Eastern
Interconnection model) is sufficiently sized to exhaust high-end GPU
resources, and the computation increases by adding contingencies and
stochastic scenarios. For 103 contingencies and 103 stochastic scenarios,
assuming a single grid contingency-scenario instance exhausts a
10 TFlops/s GPU device and leads to a
103 × 103 × 10 TFLOPS = 10 EFLOPS computation.

Demonstration calculation
requirements

The software stack implementation depends on the availability of a
linear solver that can handle very ill-conditioned problems and achieve
high GPU utilization simultaneously. The team has identified solvers
from the Magma library as suitable candidates. To create appropriate
test cases, power grid models with more than 20,000 buses are needed.
Several years of wind and solar data are needed to generate stochastic
scenarios. Additional data could be required to create cyber scenarios.

Resource requirements to run
demonstration calculation

Production runs for the challenge problem at the highest scale will be
∼1 day on full exascale systems.

• Frontier: 1 day on full system.

• Summit: 1 day on full system.

the likelihood and the impact of each contingency-scenario combination. Challenge problem details are shown
in Table 52.

6.1.2 ExaSGD: KPP Stretch Goal

The KPP stretch goal is a multiperiod security-constrained AC optimal power flow problem with frequency
recovery and restoration. The objective is to determine control settings on generators, loads, and renewable
energy resources so that the system frequency is restored after the occurrence of the contingency quickly
enough to avoid losing stability and to prevent possible cascading outages. The stretch goal includes two
analyses.

• Addition of storage devices, EV charging stations, and controllable loads in the set of resources available
to mitigate frequency deviations in addition to conventional generators. The many physical and virtual
storage options further increases the complexity of the grid, not only in terms of having more optimization
parameters and scenarios to consider but also in terms of qualitative changes in power grid behavior,
such as possible transmission scale backflow.

• Using multiperiod constraints. Generator ramping constraints span and couple multiple periods in
optimal power flow analysis and require nontrivial modifications to the model and the solving strategy.
Correctly capturing ramping and other multiperiod constraints shows not only that a desired solution
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exists but also that the control action can bring the system to that solution. Multiperiod analysis is a
critical capability for frequency restoration problems and for improving power grid resilience in general.

The stretch goal will stress test ExaSGD algorithms and libraries by using a class of problems that have
not been extensively studied, even on sub-exascale benchmarks. If successful, then the stretch goal will
demonstrate the breadth of applications for which ExaSGD technology can be deployed.

6.1.3 ExaSGD: Capability Plan

The ExaSGD capability plan was significantly revised in FY20 because the computational methods outlined
in the original project plan appeared to be unsuitable for deployment on GPU-based hardware platforms.

• ExaSGD planned to use the PIPS optimization solver [36], which depends on a robust linear solver that
can handle ill-conditioned sparse symmetric indefinite linear systems. To date, no such solver can run
efficiently on GPUs [37].

• The ExaSGD power grid modeling framework was originally implemented by using Julia language,
which is not supported on pre-exascale or exascale platforms. Additionally, the Julia-based modeling
framework did not address the potential performance bottlenecks on GPUs. Power grid models are
very sparse and highly irregular, so model evaluations on GPUs must be customized to avoid warp
divergence and poor memory coalescence.

These issues were identified as significant project risks and required the entire computational approach for
the ExaSGD project to be redesigned.

Optimization Engine

The main challenge was to devise a new optimization approach that does not depend on sparse linear
solvers. Rather than handle the power grid contingency analysis as one large optimization problem, the
new approach partitions the problem via a two-stage optimization method (e.g., Chakrabarti, Kraning, Chu,
Baldick, and Boyd [38]). Each partition (i.e., subproblem) is then compressed by using custom-developed
dense-sparse linear algebra to a smaller dense subproblem. This allows more mature dense linear solvers to
be used that better use GPUs, such as those from Magma library [39]. This methodology was developed
within HiOp library [40, 41]. The two-stage optimization is illustrated in Fig. 61.

Modeling Framework

The ExaGO library [42] was developed in FY20 to address power grid modeling challenges on GPU-based
platforms. The library design is modular; it separates modeling the front end from different hardware back
ends to enable the development of portable power grid applications. The library uses standard power system
input formats to specify the problem and thus provides domain experts with a familiar environment. During
the model setup, the GPU back end of the ExaGO library performs a one-time copy of the model data to data
structures tailored for fine-grain parallelism. This improves data coalescence and reduces warp divergence
in subsequent computations. This appears to be the first power system modeling framework designed for
hardware accelerator computations.

Programming Model

ExaSGD adopted a programming model based on C++ and portability libraries RAJA [43] and Umpire
[44] for key software stack components—HiOp and ExaGO. Using portability libraries greatly increased the
speed of ExaSGD software development and reduced the development cost. The libraries allowed for the
effective separation of responsibilities between domain experts and computational scientists. Furthermore,
this programming model enabled staged development and debugging in which 90 % of the bugs were fixed by
using CPU execution policies.

Mileposts

ExaSGD mileposts are organized into two tracks: (1) stochastic security constrained optimal power
flow analysis and (2) multiperiod analysis. The former will focus more on development because there is a
clear technical path to reach the exascale milestone. The latter requires some research to incorporate time
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Figure 61: Schematic description of the two-stage optimization method imple-
mented in ExaSGD software stack. Wind toolkit (WTK) generates stochastic
input for each power grid instance (i.e., contingency) implemented in the ExaGO
modeling framework. Security-constrained optimal power flow is computed across
all contingencies by using the two-stage approach with the HiOp engine solving
second-stage problems on GPU and instance of optimization solver tuned for high
accuracy (HiOp or Ipopt) solving the master problem.

decomposition within the global optimization scheme and some prototyping in Julia before the implementation
candidate is designed.

FY20: Milepost 1: HiOp second-stage optimization convergence on GPU on Summit.
Ensure that the GPU-friendly optimization algorithm converges. Run Formulation 3 by using
HiOp with goLLNLp modeling framework and an MPI engine on 500–1000 MPI ranks on Summit.
Use a 2000–10,000 bus grid model and 1000–5000 contingencies as the test case. Expected to
occupy 3–5 PFlops resources. Expected peak performance is ∼1 PFlops. This demonstrates that
the optimization algorithm modified to produce GPU-friendly linear problems converges when run
within a two-stage optimization framework.

Milepost 2: 1 PFlops ExaSGD software stack performance on GPU (second stage only) on Summit.
Run only the second stage of the Formulation 3 by using the WTK-ExaGO-HiOp software stack as
embarrassingly parallel 500–1000 MPI processes on Summit. All computations inside the second
stage optimization loops run on GPU. Use a 2000–10,000 bus grid model as the test case. Expected
to occupy 3–5 PFlops resources. Expected peak performance is ∼1 PFlops. This demonstrates the
performance of the software stack key components within a two-stage optimization method.

FY21: Milepost 3: 10 PFlops full-stack run and method convergence on Summit.
Run Formulation 3 by using the full ExaSGD software stack with HiOp MPI engine and ExaGO
modeling framework on Summit. Use a 10,000–20,000 bus grid model with 5+ scenarios and
2000–10,000 contingencies. All computations inside the optimization loops run on GPU. Target is
10 PFlops performance.

Milepost 4: Small-scale full-stack run and method convergence on Tulip.
Run Formulation 3 by using the full ExaSGD software stack on Tulip. Use a 1000–2000 bus grid
model with 5+ scenarios and 200–1000 contingencies. All computations inside the optimization
loops run on AMD GPUs.

Milepost 5: Convergence of a small scale two-period optimization on Tulip.
Run Formulation 4 by using the full ExaSGD software stack on Tulip and/or Summit. Use a 1000
bus grid model with 5+ scenarios and 100–500 contingencies and two periods. All computations
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inside optimization loops run on GPU.

FY22: Milepost 6: 10–100 PFlops performance and method convergence on Frontier.
Run Formulation 3 by using the full ExaSGD software stack on Frontier. Use a 30,000 bus grid
model with 10+ scenarios and 10,000+ contingencies. All computations inside the optimization
loops run on GPU. Target is 10–100 PFlops performance.

Milepost 7: Convergence of a large-scale multiperiod optimization on Summit.
Run Formulation 4 by using the full ExaSGD software stack on Summit. Use a 10,000 bus grid
model with 10+ scenarios, 5000+ contingencies, and 5–10 time periods. All computations inside
the optimization loops run on GPU.

Milepost 8: Small-scale frequency restoration on Summit.
Run Formulation 5 by using the full ExaSGD software stack on Summit. Use a 1000 bus grid
model with 5+ scenarios, 200+ contingencies, and 5–10 time periods. All computations inside the
optimization loops run on GPU. Optionally, also run an emergency planning test case based on
Formulation 4.

FY23: Milepost 9: Exascale demonstration on Frontier.
Run Formulation 3 by using the full ExaSGD software stack with the HiOp MPI engine and
ExaGO modeling framework on Frontier. Use a 70,000 bus grid model with 10+ scenarios and
10,000+ contingencies. The analysis converges.

Milepost 10. Frequency restoration medium-scale demonstration on Frontier.
Run Formulation 5 by using the full ExaSGD software stack on Frontier. Use a 10,000 bus grid
model with 5+ scenarios, 1000+ contingencies, and 5–10 periods. Analysis converges, and all
computations inside the optimization loops run on GPU. Optionally, run a multiperiod emergency
planning demonstration based on Formulation 4.

6.1.4 ExaSGD: Progress on Early and Pre-Exascale Hardware

Performance on Summit

The FY20 mileposts were essentially large-scale preintegration tests for the redesigned software stack.
The achieved results exceeded expectations for both mileposts.

Milepost 1: This milepost verified that the optimization algorithm designed for execution on heterogeneous
hardware platforms will converge at large scale. Although optimization-based decomposition was tested at
smaller scale during the ARPA-E Grid Optimization competition [45], the mixed dense-sparse linear algebra
[46] was tested for the first time within a heterogeneous parallel environment. With this new approach, a
security-constrained optimal power flow analysis for a 20,000 bus grid and 12,500 contingencies was performed
on 1440 MPI ranks within 10 min. For comparison, for a grid of comparable size, current transmission grid
operators can run less than 100 contingencies for a security constrained power flow analysis with standard
industry tools. This means that because of present tools constraints, grid operators look for any secure
solution without trying to optimize it. Although still under development, the proposed technology could
dramatically improve the way power grids are operated today.

Preliminary scaling results that illustrate the operation of the two-stage optimization approach are shown
in Fig. 62. The figure shows the number of contingencies (second-stage subproblem optimization runs)
evaluated in time. First, the evaluation of the base-level problem occurs on a single device—in this case, a
CPU—and runs for about 100 s. Then, second-level problems (i.e., contingencies) are evaluated, and the
results are communicated to and from the base-level problem through an asynchronous MPI update. During
that period, the computation scales well. When converging to the solution of the full problem, most of the
subproblems will have converged, so many MPI ranks become underutilized. This shows as plateauing in
curves for 2880 and 1440 MPI ranks in Fig. 62. Work to improve the asynchronous MPI engine for the
two-stage optimization method is underway.

In these computations, the model evaluation was performed entirely on CPU by using a mature and
well-tested modeling framework to isolate the optimization algorithm from potential bugs in the GPU model
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Figure 62: Milepost 1 test results.

Figure 63: Roofline plot for key HiOp kernels.

implementation. Such computation was obviously suboptimal, and future milestones will provide even better
performance.

The performance of the HiOp solver was analyzed by using a roofline analysis (i.e., by looking at the
performance of individual kernels given their arithmetic intensity). The roofline plot for HiOp execution is
shown in Fig. 63. The line in the plot represents the base roofline. The closer a point is to the roofline, the
more optimized it is with respect to performance that can be achieved for the given arithmetic intensity.
Only the top few kernels of HiOp are shown here, and others are omitted because they consume less than
0.5 % of the total execution time. The sloped line labeled “DRAM” represents the limits of routines that are
memory-bound. Key kernels are fairly well optimized, with the possible exception of gemm kernel2x2 core

and gemv2N kernel. These two kernels are actually called by the linear solver from the Magma library and
are not part of the HiOp code.

Milepost 2: This milepost verified the integration of the modeling framework ExaGO and the optimization
engine HiOp, and it assessed their performance on GPU. In this exercise, an embarrassingly parallel
computation for many contingencies was run to emulate the second stage of the two-stage optimization
method. The entire computation—including model evaluation, optimization, and underlying linear solver—
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Table 53: Comparison of CPU and GPU execution time for the solve stage on
Newell node using HiOp’s mixed dense-sparse optimization solver

Grid GPU run (s) CPU run (s) Speedup

Illinois (200 bus) 2.9 0.6 0.2
Carolina (500 bus) 8.0 14.9 1.9
Texas (2000 bus) 60.2 1624 27

(a) Weak scaling. (b) Strong scaling.

Figure 64: Milepost 2 test results. Near-ideal scaling of the second stage of the
two-stage optimization approach suggests no computational bottlenecks.

was run on GPUs. Table 53 shows the preliminary performance results for synthetic grid models [47]. When
running computations on GPU, the speedup improves as the size of the problem increases.

As expected, the computation shows near-ideal weak and strong scaling (Fig. 62). This verifies that
the implementation is correct and that compute time does not vary significantly from one contingency (i.e.,
subproblem) to another. This is a verification that there are no computational bottlenecks in the GPU
implementation of the modeling framework ahead of the further development of the MPI engine for the
two-stage optimization.

Next Steps

The immediate next step is to complete software stack integration after performing the successful
preintegration tests specified in Mileposts 1 and 2. This will require improvements in the asynchronous MPI
engine for the two-stage optimization, mainly in terms of its scalability.

Once the software stack is well-tested on Summit, the team will port it to Tulip platform, profile its
performance, and compare it with profiling results on Summit (Milepost 4). In parallel to this activity, the
team will perform several scaling studies at Summit to try to achieve robust performance of the optimization
method for grids with 20,000+ buses, 10,000+ contingencies, and 5+ stochastic scenarios (Milepost 3).
Finally, the team will prototype multiperiod optimization techniques and select an implementation candidate
for FY22 (Milepost 5).

6.2 CANDLE

DOE has entered into a partnership with the National Cancer Institute (NCI) of the NIH and has identified
three key challenges that the combined resources of DOE and NCI can accelerate. The first challenge, called
the drug response problem, is to develop predictive models for drug response that can be used to optimize
preclinical drug screening and drive precision medicine-based treatments for cancer patients. The second
challenge, called the RAS pathway problem, is to understand the molecular basis of key protein interactions
in the RAS/RAF pathway that are present in 30 % of cancers. The third challenge, called the treatment
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Figure 65: A transfer learning design for training 1 million models to predict
the effect of one drug on one cancer cell line.

strategy problem, is to automate the analysis and extraction of information from millions of cancer patient
records to determine optimal cancer treatment strategies across a range of patient lifestyles, environmental
exposures, cancer types, and healthcare systems. Although each of these three challenges is at a different
scale and has specific scientific teams collaborating on the data acquisition, data analysis, model formulation,
and scientific runs of simulations, they each also share several common threads. The ECP project called the
Exascale Deep Learning and Simulation Enabled Precision Medicine for Cancer focuses on the ML aspect of
the three challenges and, in particular, builds on a single scalable deep neural network (DNN) code called
Cancer Distributed Learning Environment (CANDLE).

6.2.1 CANDLE: Science Challenge Problem Description

The CANDLE challenge problem is to solve large-scale ML problems for two cancer-related pilot applications:
(1) predicting drug interactions and (2) predicting cancer phenotypes and treatment trajectories from patient
documents. The CANDLE pilot application that involves predicting the state of MD simulations is treated as
a stretch goal. The CANDLE project has specific strategies to address these challenges. For the drug response
problem, unsupervised ML methods are used to capture the complex, nonlinear relationships between the
properties of drugs and the properties of the tumors to predict response to treatment and therefore develop a
model that can provide treatment recommendations for a given tumor. For the treatment strategy problem,
semisupervised ML is used to automatically read and encode millions of clinical reports into a form that can
be computed upon. Each problem requires a different approach to the embedded learning problem, all of
which are supported with the same scalable deep learning code in CANDLE.

The challenge for exascale manifests in the need to train large numbers of models. One need inherent to
each of the pilot applications is producing high-resolution models that cover the space of specific predictions
individualized in the precision medicine sense. For example, consider training a model that is specific to a
certain drug and individual cancer. Starting with 1000 different cancer cell lines and 1000 different drugs,
a leave-one-out strategy to create a high-resolution model for all drug-by-cancers requires approximately 1
million models. Yet, these models are similar enough that using a transfer learning strategy in which weights
are shared during training in a way that avoids information leakage can significantly reduce the time needed
to train a large set of models. Figure 65 shows a general strategy of this weight-sharing approach to training
many models in which a transfer of weights delineates stages in the workflow.

In practice, speedup related to weight sharing can be discussed in the context of the challenge problem in
terms of work actually done and the naive work done. Consider work actually done WD as being the number
of jobs J multiplied by the actual number of epochs E trained for all stages s:

WD =

s∑
1

JE . (18)
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A stage is a discrete and naive work done WN being the number of jobs in the last stage multiplied by the
number of epochs needed for a model to converge Ec,:

Wn = JsEc . (19)

The team can then talk about speedup as being the ratio WN/WD.
Several parameters exist when considering accelerated model training via the transfer of weights. These

include how many transfer events, how to partition the input data, and how many epochs before a transfer
occurs. Additional considerations include what weights to transfer and whether to allow those weights to be
updated in subsequent models. The requirements associated with the science challenge problem of training
many high-resolution models are outlined in Table 54.

6.2.2 CANDLE: KPP Stretch Goal

CANDLE will consider two KPP stretch goals.

1. For the RAS pathway problem, Pilot2, multiscale MD runs are guided through a large-scale state-space
search by using unsupervised learning to determine the scope and scale of the next series of simulations
based on the history of previous simulations. CANDLE has demonstrated a prototype DNN that
performs unsupervised feature learning on MD simulation neighborhoods. This stretch goal will consider
alternative DNN formulations to improve the predictive performance of Pilot2 models. The final result
will be the demonstration of the CANDLE FOM that includes a training rate for the revised Pilot2
models.

2. CANDLE will develop the first full US population level precision oncology model. This model will
leverage the work in the DOE-NCI Pilot3 to apply NLP to the national cancer registries to extract
structured terms from pathology reports to identify the type, stage and location of tumors, DOE-NCI
Pilot1’s models to predict tumor drug response to single drug and drug combinations, the NCI Genomic
Data Commons repository of tumors and genomic profiles for more than 15,000 patients, and the ALCF’s
CANDLE Early Science Data Science project. The goal is to develop a nationwide population-level
estimate of the potential benefit of precision medicine applied to cancer. The team will use the SEERs
database processed with MT-HCAN to generate a national estimate of the emerging cancer patient
population profile (approximately 1.6 million new cancer cases per year) for the next 10 years. This
patient profile will be combined with the GDC database to generate a national-level tumor population
estimate, including tumor type, genomic, and transcript profile. The resulting “digital twin” database
of 16 million cancer patients will then be processed by using the drug response models to evaluate
optimal drug treatment strategies for each virtual patient. The team will use the “Uno-MT-UQ” drug
response model to predict the response for each of the 700 drugs in the current set of standard of care
(SoC) drugs and drugs in clinical development. UQ methods will be used to provide confidence intervals
for each of the predictions. Additionally, the team will predict drug response for approximately 5000
SoC drug combinations by using our Combo-UQ model. The result will be the first national-scale
predictive oncology “benefit” map that outlines which cancers, regions, and population groups would
most benefit from a comprehensive implementation of precision medicine.

6.2.3 CANDLE: Figure of Merit

The CANDLE FOM is the average rate of model training to convergence. On a given system, it can be
demonstrated that n instances of a pilot model (Pi) can be trained to convergence in a given time t, thus
producing a rate xi equal to n/t. Models are defined as part of each of the three pilot applications. Because
each pilot application will focus on different DNN-based models and because rates are being measured for
each pilot model, the total FOM will be the harmonic mean (H) of the rates across the models from the
three pilot applications, where x is the rate of nth model trained to convergence:

H =
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

. (20)
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Table 54: CANDLE challenge problem details.

Functional requirement Minimum criteria

Models Deep learning neural networks for cancer: feed-forward, auto-encoder,
recurrent neural networks.

Numerical methods Gradient descent of model parameters, optimization of loss function,
network activation function; regularization, and learning rate scaling
methods.

Problem size and complexity KPP-1: Large-scale ML solutions will be computed for the three cancer
pilots.

• Pilot1: Leave-one-out cross validation of roughly 1000 drugs by
1000 cell lines. This involves roughly 1 million models. Partition
the drugs and cell lines into n sets and train with those for e
epochs, then transfer the weights w to the next set of models,
expanding the number of models in each iteration. Each of the
models at iteration i can be safely (i.e., avoiding information
leakage) used to seed models for iteration i+ 1, where the set of
drugs and cell lines in the i+ 1 validation set was not in the
training set of the model at iteration i.

• Pilot2: State the identification and classification of one or more
RAS proteins binding to a lipid membrane; prediction over time
of clustering behavior of key lipid populations that leads to RAS
protein binding. RAS proteins are represented in sufficient
resolution to model all pairwise interactions within and between
proteins. Lipid membranes are represented as continuous density
fields of tens of species of lipid concentration. Predictions are
trained on the cross product of thousands of simulations, each of
which is thousands of time steps, over multiple protein
configurations, and performed for a large range of different
concentrations.

• Pilot3: Predicting cancer phenotypes and patient treatment
trajectories from millions of cancer registry documents.
Thousands of multitask phenotype classification models will be
built from defined combinations of descriptive terms extracted
from 10,000 curated text training sets. To accelerate model
training, the team will use a transfer learning scheme with
weight sharing during training.

Demonstration calculation
requirements

The computation performed at scale will be standard neural network
computations, matrix multiplies, 2D convolutions, pooling, and so on.
These will be specifically defined by the models chosen to demonstrate
transfer learning. The computations performed at scale will require
weight sharing.

Resource requirements to run
demonstration calculation

For each pilot, each pilot problem is estimated to require up to 12 h at
full system.
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Table 55: Current CANDLE FOMs computed on Summit.

CANDLE pilot model Full Summit estimates

Pilot1 contribution Uno 931.04 models per hour
Pilot2 contribution C1-TDA N/A
Pilot3 contribution P3B4 511.2 models per hour

Total 660.01 models per hour

The rate of model training to convergence is model-specific, and the time varies accordingly with the
number of epochs needed to train the model to convergence. For this reason, the team must choose a few
numbers of models, ideally one per pilot project, then fix the input data and number of epochs associated
with each model so that repeated measurements of the FOM can be compared with previous measurements.
A weighted harmonic mean (Hw) will be used that considers the number of epochs required to train to
convergence for the different models. In cases in which computational resources or training to convergence
exceed standard queue policies and if the time per epoch can be assumed to be constant, then Hw remains a
valid choice. The weighted harmonic mean of the rate of model training can be represented as

Hw =
n

ec1
e1x1

+ ec2
e2x2

+ · · ·+ ecn
enxn

, (21)

or
HW =

n∑n
i=1

eci
eixi

, (22)

where Hw is now a weighted harmonic mean, eci is the number of epochs needed to train the ith model to
convergence, and ei is the number of epochs actually run for the ith model. This assumes that the time per
epoch is constant, which holds true for many of the pilot application’s models.

The CANDLE FOM will be computed by using training benchmarks for Pilot1 and Pilot3 models.
Integrating benchmarks for Pilot2 models is part of the CANDLE stretch goal.

FOM Update

The CANDLE team reported an improvement of the CANDLE KPP from 23.99 to 81.99 in 2020. This
reflects the current FOM on Summit relative to the FOM on Titan. The Pilot1 benchmark (Uno) model and
Pilot3 benchmark (P3B4) model are the kernels of the CANDLE challenge problems. These are the focus
of our FOM. Over the last year, numerous improvements to model training were accomplished. Table 55
provides the current CANDLE FOM calculated on Summit.

6.2.4 CANDLE: Progress on Early and Pre-Exascale Hardware

Performance on Summit

Pilot1: We implemented an on-memory mode in the data loader that expedites the data input process
when the dataset size can fit into the host memory. We observed a 4 % improvement due to the software
stack update (from ibm-wml-ce/1.6.2-3 to ibm-wml-ce/1.7.0-3) and a 41 % improvement when the on-memory
loader is compared with the previous loader (on-disk mode). The input features were down-selected by the
method developed in Milestone 16. While keeping the model accuracy equivalent, we achieved about a 10 %
speedup with the selected features. We have configured our framework to use all six GPUs per node, which
increased the training throughput about five fold.

Pilot3: The P3B4 benchmark was updated to take advantage of mixed precision arithmetic on Summit’s
V100 GPUs for some operations. We established that FP16 can be used for certain operations without
impacting the F1 scores by which the model accuracy is measured. To better align with our current challenge
problem, rather than training models over the current dataset, we are partitioning the dataset into ∼20
subgroups to develop more targeted models. This results in more models being trained on smaller portions of
the current dataset. For each of the 20 subgroups into which the dataset is partitioned, we are training 100
models for 30 epochs. For each model, we randomly sample 25 % of the subset of data associated with that
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subgroup. For the purposes of the FOM computation, this is equivalent to having trained 100 models on
25 % of the current dataset (814,230 reports).

Next Steps

CANDLE has two upcoming milestones due in January 2021. With regards to our FOM, our next steps
will focus on the CANDLE milestone “Inference: Model Compression.” This milestone aims to compress
deep learning models to accelerate the performance of inference and related tasks without significantly
compromising accuracy. As part of considering methods to compress a trained model, quantization-aware
training will be explored from the perspective of the impact on model accuracy and on the CANDLE FOM.

6.3 ExaBiome

Metagenomics involves the application of high-throughput genome sequencing technologies to DNA extracted
from microbial communities, which is a powerful and general method for studying microbial diversity,
integration, and dynamics. Since the introduction of metagenomics over a decade ago, it has become an
essential and routine tool. Assembly and comparative analyses of metagenomic datasets are among the most
computationally demanding tasks in bioinformatics. The scale and rate of growth of these datasets will require
exascale resources to process (i.e., assemble) and interpret through annotation and comparative analysis. The
ExaBiome project aims to provide scalable tools for three core computational problems in metagenomics: (1)
metagenome assembly, which takes raw sequence data and produces long genome sequences for each species;
(2) protein clustering and annotation, which finds families of closely related proteins and annotates them
with functional properties; and (3) signature-based approaches to enable scalable and efficient comparative
metagenome analysis, which might show variability of an environmental community over time or from changes
in precipitation, fires, temperature, and more.

The ExaBiome team developed a metagenome assembler, MetaHipMer, which scales well on thousands
of compute nodes. MetaHipMer has already been used to assemble large environmental datasets that
were impossible with previous tools. Over the last year, MetaHipMer was completely rewritten in a single
programming model, UPC++. The resulting code is faster and more scalable, uses less memory, and is easier
to install and maintain. The team also had a significant effort in GPU optimizations for key kernels and has
integrated GPU-optimized alignment into the code. MetaHipMer is designed for short read (Illumina) data,
but a second assembler called diBELLA [48] is also under development for long read technology. diBELLA
shows even higher computational intensity than MetaHipMer, making it a good fit for exascale systems.
A second thrust of ExaBiome involves protein clustering and annotation. ExaBiome’s HipMCL [49] and
PASTIS [50] code—the latter developed jointly with ExaGraph—provide a scalable protein clustering pipeline,
whereas a new prototype deep learning framework [51] shows promising results for functional annotation.
HipMCL runs on thousands of nodes and effectively uses GPUs. Finally, to support comparative analysis
across metagenomes, the team recently built a scalable k-mer analysis tool, KmerProf, leveraging modules in
MetaHipMer to compute k-mer profiles to quickly approximate and compare metagenomes by using various
distance metrics on the profiles. The ExaBiome challenge problem focuses on the first metagenome assembly
problems, but that capability will enable exascale feasibility for other bioinformatics problems in the other
ExaBiome thrusts and more broadly.

6.3.1 ExaBiome: Science Challenge Problem Description

ExaBiome’s challenge problem is to demonstrate a high-quality assembly on at least 50 TB of environmental
data (i.e., reads) that effectively use an exascale machine. The intent is to use a scientifically interesting
environmental sample that might include multiple temporal or spatial samples; the goal is to perform single
assembly by using complete sequence data. In contrast, current state-of-the-art assembly pipelines are forced
to use subsampling with large datasets, which limits the ability to assemble rare, low-coverage species and
produces confusing duplications of genomes. The team recently published a paper that shows that the
combination of larger datasets and more computing produces superior quality assemblies [52]. Addressing
this challenge problem will demonstrate a first-in-class science capability by using the power of exascale
computing on a non-traditional scientific workload. MetaHipMer is being used by science projects at the
Joint Genome Institute (JGI), and it has inspired the genomics community to collect larger datasets knowing
that they can be analyzed. There are many potential beneficial science impacts, such as enhancing the
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Table 56: ExaBiome challenge problem details.

Functional requirement Minimum criteria

Models Given a set of genome fragments of DNA with a given range of length
and error rate, (100–200 base pairs with <0.1% errors or 10,000+ base
pairs with up to 18% errors), a genomic assembly is an arrangement of
these fragments to form large contiguous sequences from which genes
and species can be identified. Standard quality metrics are used to
assess the accuracy of these sequences: the average length of output
strings (10,000+ base pairs for short reads) and percentage of the input
reads that map to the output (>90% is reasonable).

Numerical Methods De Brujin graphs construction and analysis, dynamic programming for
string alignment, Bloom filters, k-mer counting/analysis, and distributed
hash tables.

Problem size and complexity 50 TB of real or synthetic environmental data using short reads, long
reads, or a combination of the two.

Demonstration calculation
requirements

To demonstrate the challenge problem, the team must run a complete
assembly because all the stages must be executed to truly test the
scaling. The MetaHipMer and diBELLA pipelines can be run in
separate stages with data output to a file system, if desired. Thus,
before performing a full-scale assembly, the scalability of each stage will
be tested to ensure that it is progressing at a reasonable rate. The team
will also use intermediate problem and machine sizes to validate scaling
assumptions.

Resource requirements to run
demonstration calculation

Total work required and memory/operation resource requirements can
be estimated for the full dataset by extrapolating from current scaling
performance. It required roughly 100 node-hours per terabyte of input
data in a weak-scaling study of a tropical soil dataset with the largest
run being 7.7 TB in 1.4 h on 512 Summit nodes with 84 TB of aggregate
memory. Assuming improved GPU effectiveness will compensate for any
scaling inefficiency, we estimate that 50 TB will require over 0.5 PB of
memory and run in 5 h on 1000 Frontier nodes. Because of uncertainties
in the sample complexity, which can substantially increase memory use
and running time, we set a baseline goal of 20 wallclock hours for the
50 TB assembly on Frontier or Aurora.

understanding of microbial functions that can aid in environmental remediation, food production, and medical
research. Given the growth of genomic data, a scientifically interesting 50 TB environmental sample should
be available by 2022 and is expected to be large enough to fully use an exascale machine. However, the
challenge problem could also use synthetic data with environmental characteristics or an ensemble assembly
of multiple independent environmental datasets. It could use short reads, long reads, or a hybrid of the two.
Challenge problem specifications for ExaBiome are listed in Table 56.

6.3.2 ExaBiome: KPP Stretch Goal

The stretch goal of ExaBiome is to develop and use exascale tools to analyze at least 1 PB of microbial
or plant data. The ExaBiome project is developing exascale tools for single genome and metagenome
assembly, specifically targeting environmental large microbial communities but also applicable to complex
plant genomes and possibly pan-genome studies that co-assemble a family of related genomes. The JGI
currently has over 8 PB of genomic data, and this is expected to grow. For this goal, it could also be
combined with other datasets, including the NIH Sequence Read Archive (SRA) and the newly formed

Exascale Computing Project (ECP) 133 ECP-U-AD-RPT 2021 00208



National Microbiome Data Collaboratory. The ExaBiome team is also building protein analysis tools based
on traditional unsupervised methods (e.g.,Markov chain clustering) and deep learning methods that operate
on large community databases. The clustering pipeline of PASTIS + HipMCL has been used in production
at JGI. Comparative metagenomics tools based on k-mer profiles, alignment against databases, or ML can
operate on assembled or unassembled data. Realization of this goal could also involve support for new
long-read sequencing technologies or high-quality extension of those techniques, which might require additional
algorithmic work and software. The team will work toward this 1 PB goal with intermediate scale problems
beyond the 50 TB in the assembly baseline goal. The higher level scientific objective is to build more complete
assemblies and improve understanding of the relationship between different species by using environmental
samples collected over space or time for DOE applications in energy and the environment.

6.3.3 ExaBiome: Capability Plan

The KPP-2 goal and prior mileposts are for the assembly process. Although scaling estimates are based on
metagenome assemblies with MetaHipMer, the goals are broader for large-scale assemblies, which could use
diBELLA or pan-genome plant assemblies. Protein clustering mileposts with PASTIS plus HipMCL provide
a set of future goals for the higher level analysis.

All the assembly mileposts consist of increasing dataset sizes on larger machines as they become available.
Achieving these mileposts will require addressing any scalability or performance issues that come to light and
any software bugs that are exposed.

FY19/Q4: 3 TB assembly on NERSC Cori.

• The goal was completed on schedule. It performed a “push-button” assembly that scales in all
stages of the pipeline.

• To achieve good scaling on this dataset size, the team switched to the newer, more scalable
scaffolding algorithm cgraph and transitioned to an interoperable version of MetaHipMer, which
included UPC and UPC++ in a single binary.

FY20/Q4: 3 TB assembly on Summit or Perlmutter.

• The goal was completed on schedule. It demonstrated that the MetaHipMer code runs efficiently
and strong-scales well on a different architecture than Cori.

• This goal required adequate GPU support in MetaHipMer. It used the new MetaHipMer2 pipeline,
which was entirely rewritten in UPC++ and the GPU-optimized aligner (ADEPT) [53].

FY21/Q4: 16 TB assembly on Summit or Perlmutter.

• Demonstrate that MetaHipMer can assemble a larger dataset on Summit or NERSC9.
• This milepost will depend on the previous year and on the optimized use of GPUs for key

computations, including alignment, k-mer analysis, and local assembly.

FY21/Q4: 1.5 billion proteins clustered on Summit.

• HipMCL accepts a large network file that represents protein-protein sequence similarities, which
will be generated offline by LAST, a third party tool.

• This dataset required approximately 4 h using the CPU version of HipMCL on 2000 nodes of
Cori/KNL.

FY22/Q4: 30 TB assembly on Summit, Perlmutter, or available exascale machine at scale.

• This will require an improved overlap of communication and computation and an overlap between
the GPU executions with CPU executions (e.g., run alignment on the GPUs while running
distributed hash table retrieval on the CPUs).

• It will also require a port of the GPU kernels to the exascale GPU programming models for Aurora
and Frontier if those systems are used.

FY22/Q4: 1.5 billion proteins clustered de novo using PASTIS + HipMCL on Perlmutter.
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Figure 66: (Left) Performance of various versions of MetaHipMer on different
node counts, problem sizes, and systems over time, showing a 44× speedup on
a constant 512 nodes since 2016. (Right) Performance breakdown of the latest
MetaHipMer.

• The input is raw protein sequences, and this will be a combined PASTIS + HipMCL pipeline that
generates protein-protein sequence similarity network on the fly and that feeds to HipMCL.

FY23: 50 TB assembly on an exascale system (KPP-2 goal).

• This milepost will depend on the success of the previous years’ efforts, and it requires collaboration
with the PAGODA team on memory scaling an efficient use of the Slingshot network on Aurora
and Frontier.

FY23: 1.5 billion proteins clustered de novo using PASTIS + HipMCL on Frontier.

• The input is a required port of the protein alignment code in PASTIS (joint with ExaGraph) for
the AMD GPUs and use of optimized sparse matrix libraries for that architecture.

6.3.4 ExaBiome: Progress on Early and Pre-Exascale Hardware

Performance on Summit

The MetaHipMer application performance has improved from the availability of faster processors (i.e.,
CPU and GPU nodes), networks, and memory systems, as well as better algorithms and optimized software.
Figure 66 shows the rate at which input data are assembled (bytes assembled per second, which is roughly
twice the number of base pairs assembled per second). This metric not perfect because the complexity of a
dataset (e.g., number of species, amount of coverage of each) can significantly change the cost of assembly.
However, this graph shows assemblies performed on subsets of two environmental datasets with comparable
complexity: a 2.6 TB wetlands dataset and a 7.7 TB arctic soil dataset. The wetlands data were used in 2016
but were only fully assembled as a single dataset in 2017. This was done by using 512 Cori Haswell nodes for
most of the assembly and two large memory nodes for scaffolding, which had a nonscalable algorithm due to
a large connected component in an intermediate stage. The scaffolder was entirely rebuilt in 2018 with a
more scalable algorithm, cgraph, and in 2019, there were several attempts to assemble parts of the 7.7 TB
arctic dataset on Cori’s KNL nodes. The improved strong scaling with node counts is evident in those 2019
data points relative to 2017, but the largest assembly was still 2.5 TB. In 2019, the remainder of MetaHipMer
was rewritten in UPC++ to match the new scaffolder, the GPU alignment was added, and the code was run
on 512 Summit nodes. The last four bars show the rate at which successively larger problems were assembled,
which was roughly 100 node-hours per TB, which gives us an estimate on future large-scale computations.
This latest version of MetaHipMer (v2) has significantly improved performance, and it has improved 44× on
512 nodes since 2016.
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Figure 67: Performance of ADEPT alignment kernel on CPUs vs. GPUs.

Figure 68: Performance gain from adding GPU-optimized ADEPT alignment
code into ExaBiome applications.

Across the ExaBiome applications are some key computational kernels that dominate the workload,
including string alignment, k-mer counting/hashing, and sparse matrix multiplication. All of these come
in variations, such as for DNA and proteins, and depend on the length of strings, the information stored
with k-mers, and whether a matrix is being multiplied by a dense vector, a set of dense vectors, or another
sparse matrix. Figure 67 shows the performance of the new ADEPT GPU alignment algorithm as giga-cell
updates per execution. ADEPT scales well and significantly outperforms the CPU implementations (SWW
and SeqAn) on a 32 core Intel Haswell node. The left-hand graph shows the results on DNA, which is used in
both assembly and some comparative analysis approaches. The right-hand graph shows results on proteins
used in PASTIS.

Figure 68 shows the impact on overall application performance for MetaHipMer (left) and PASTIS (right)
running on a Cori CPU vs. GPU node with eight v100s from integrating the ADEPT GPU aligner. The
GPU alignment work was all performed in collaboration with HI-funded staff at NERSC.

K-mer counting has multiple uses in all three application areas of the project and was more recently
adapted to GPUs. More recent work shows the speedup of a stand-alone k-mer counting on multiple nodes.
Figure 69a shows CPU (left) and GPU (right) performance on 64 Summit nodes. For the different y-axes,
the all-to-all communication time in red is essentially unchanged between the two.

The HipMCL running time is dominated by a sparse matrix multiplication operation with application-
specific features (e.g., cutoff) to reduce memory use. It was optimized for GPUs, as shown in Fig. 69b.
HipMCL is based on a single node code, MCL, which previously took several days for large datasets and
sometimes ran out of memory. With the new high-performance HipMCL, the clustering bottleneck began
producing the input, which requires a similarity computation based on protein alignment. This similarity
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Figure 69: (a) K-mer counter on Summit. (b) HipMCL on Summit.
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scoring process is now captured in the PASTIS code, a distributed memory code build by ExaBiome and
ExaGraph.

Next Steps

Over the next few months, the ExaBiome team will be performing additional experiments on the GPU
k-mer counter, including porting to HIP and integrating into the MetaHipMer and KmerProf (comparative
analysis profiling) applications. More work is ongoing on the GPU aligners ADEPT and LOGAN, including
some additional optimizations, porting, and integration into PASTIS and diBELLA. A new GPU code for local
assembly, one of the stages in MetaHipMer, is also underway and shows some promising initial results. This
has proven to be a challenging effort because it required several data structures from the Standard Template
Library to be rewritten in CUDA. For sparse matrix algorithms, the plan is to rely on vendor-optimized
libraries as much as possible, except where specialized versions are required, such as in HipMCL.

Aside from these single node optimizations, ExaBiome is exploring options to improve locality and reduce
the number of messages in MetaHipMer and ways of hiding communication in diBELLA. They are also
focused on the large assemblies to continue meeting their milepost. Partnership with the PAGODA project
has been critical at many stages to ensure scalability in running time and memory use, and we expect this to
continue. Similarly, the ongoing collaboration with ExaGraph is essential to the PASTIS/HipMCL work.
The team has also benefited from working closely with the NERSC NESAP team and plans to expand with
other similar teams at the leadership computing facilities.

6.4 ExaFEL

The overarching goal of the ExaFEL project is to substantially reduce, from weeks to minutes, the time
to analyze molecular structure x-ray diffraction data generated by the SLAC Linac Coherent Light Source
(LCLS) facility. Near-real-time interpretation of molecular structure revealed by x-ray diffraction will require
computational intensities of unprecedented scales coupled to a data path of unprecedented bandwidth.
Detector data rates at light sources are advancing exponentially; LCLS will increase its data throughput by
three orders of magnitude by 2025 with the LCLS-II-HE upgrade.

LCLS users require an integrated combination of data processing and scientific interpretation in which
both aspects demand intensive computational analysis. The ultrafast x-ray pulses are used like flashes from
a high-speed strobe light that produce stop-action movies of atoms and molecules. The analysis must be
carried out quickly to allow users to iterate their experiments and extract the most value from scarce beam
time. Enabling new photon science from the LCLS will require near-real-time analysis (∼10 min) of data
bursts, which require commensurate bursts of exascale-class computational intensities.

The high repetition rate and ultrahigh brightness of the LCLS make it possible to determine the structure
of individual molecules, mapping out their natural variation in conformation and flexibility. Structural
dynamics and heterogeneities—such as changes in the size and shape of nanoparticles or conformational
flexibility in macromolecules—are at the basis of understanding, predicting, and eventually engineering
functional properties in biology, material, and energy sciences. The ability to image these structural dynamics
and heterogeneities by using noncrystalline-based diffractive imaging, including single-particle imaging and
fluctuation x-ray scattering, has been one of the driving forces of the development of x-ray free-electron
lasers. However, in experiments with large biological macromolecules, the time-dependent dynamic changes
of greatest interest could involve only a few atoms out of tens of thousands, and thus the x-ray diffraction
difference effects will only be on the order of 1–2 % of the total diffraction. To visualize important structural
changes on this scale, very large datasets are required (107 diffraction patterns from randomly oriented
samples), as well as new computational algorithms for more accurate analysis.

6.4.1 ExaFEL: Science Challenge Problem Description

The ExaFEL challenge problem is to create an automated analysis pipeline for serial femtosecond crystallog-
raphy (SFX), also known as nanocrystallography. Although the traditional data analysis pipeline quantifies
the diffracted Bragg spots by summation-integration (a Bragg spot typically covers more than one pixel), the
envisioned exascale algorithm will model each pixel on the image and thus push the overall accuracy to the
desired level.
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Table 57: ExaFEL challenge problem details.

Functional requirement Minimum criteria

Models Iterative estimation of crystallographic structure factors from diffraction
images using the size, shape, and intensity profile of Bragg spots.

Numerical methods FFT, Quasi-Newton parameter estimation (limited-memory
Fletcher-Boyden-Goldfarb-Shanno); Bayesian estimation.

Problem size and complexity Data ingest: Ability to ingest diffraction images at 1 TB/s. Memory:
Ability to store between 0.1 and 10 PB of events data in memory; each
calculation will require between 107 (one run) and 109 (one experiment)
diffraction images, and the size of an image will be O(10 MB).
Workflow: Ability to ingest data while the calculation is ongoing,
ability to delegate data across multiple nodes for analysis, ability to
exchange/average the parameter estimates across nodes, ability to
off-load the most computing intensive tasks (e.g., x-ray tracing modeling
step with nanoBragg) to GPU accelerators.

Demonstration calculation
requirements

Run SFX against at least O(107) images. If resources (e.g., memory) are
available, then a full demonstration calculation will be performed by
running SFX against O(109) images.

Resource requirements to run
demonstration calculation

The team expects to need roughly half of the exascale machine for
20 min to run the demonstration calculation for O(109) images.

The basic workflow is envisioned as a parameter-optimization inverse problem. Traditional crystallographic
data analysis is used to determine approximate starting values for the structure factors and geometric factors.
The nanoBragg/CCTBX software is used to forward-simulate the diffraction images by using a parametric
model of pixel intensity with which we can estimate the posterior probability of the model within a Bayesian
framework. We then employ an iterative first derivative-based method to compute better parameter estimates
and repeat the cycle until convergence at the maximum posterior probability.

Rapid feedback is crucial for tuning sample concentrations to achieve a sufficient crystal hit rate, ensuring
that adequate data are collected and steering the experiment. The availability of exascale computing resources
and a HPC workflow that can handle incremental bursts of data in the analysis will allow one to perform data
analysis on the fly, providing immediate feedback on the quality of the experimental data while determining
the 3D structure of the molecule simultaneously.

To show the scalability of the analysis pipeline, we plan to progressively increase the fraction of the
machine used for reconstruction while keeping the number of diffraction images distributed across multiple
nodes constant. The goal is to distribute the images over an increasing number of nodes while reducing the
overall reconstruction time up to the point where the analysis can keep up with the data collection rates
(5 kHz). Table 57 summarizes the details of the ExaFEL challenge problem.

6.4.2 ExaFEL: KPP Stretch Goal

The team proposes two high-risk, high-reward stretch goals for ExaFEL in the areas of single particle imaging
and resource orchestration.

Single Particle Imaging

This stretch goal will aim at scaling SPI reconstruction with the Multi-Tiered Iterative Phasing (M-TIP)
algorithm to keep up with LCLS-II data collection rates and possibly be able to run M-TIP at scale against
actual experimental data. The main risk associated with being able to run against experimental data is that
the ExaFEL team does not have control over which experiments will be performed at the LCLS during the
lifetime of the ECP.

In SPI, diffraction images are collected from individual particles and are used to determine molecular
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or atomic structure, even from multiple conformational states or nonidentical particles under operating
conditions. Determining structures from SPI experiments is challenging since orientations and states of
imaged particles are unknown and images are highly contaminated with noise. Furthermore, the number
of useful images is often limited by achievable single-particle hit rates, which is currently �1. The M-TIP
algorithm introduces an iterative projection framework to simultaneously determine orientations, states, and
molecular structure from limited single-particle data by leveraging structural constraints throughout the
reconstruction, offering a potential pathway to increasing the amount of information that can be extracted
from single-particle diffraction.

Resource Orchestration

This stretch goal will aim at scaling resource orchestration capabilities to allow: (1) the science data to
be streamed from the beamline to the supercomputer at LCLS-II throughputs, and (2) the analysis to be
started within seconds from the start of data collection.

The main risk associated with this stretch goal is related to the fact that the ExaFEL team does not have
complete control over these capabilities, which will require engagement with the computing facilities.

6.4.3 ExaFEL: Capability Plan

Recently Delivered

• NanoBragg integration: The goal was to develop GPU kernels to solve the nanoBragg inverse problem
and solve for physics parameters. This capability was demonstrated on Summit using O(105 − 106)
diffraction patterns of randomly oriented microcrystals simulated in an XFEL beam under defined
conditions.

• Realistic simulation of SPI data: We leveraged the GPUs available on Summit to generate O(106)
diffraction patterns of multiple conformations (>5) of a protein sample accounting for beam fluctuations,
parasitic beamline scattering, and detector noise. This milepost recognizes the need for simulated SPI
data to test and measure the performance of the M-TIP algorithm.

• M-TIP workflow acceleration: We identified steps in M-TIP that are suitable for off-loading to
GPUs. In particular, we investigated acceleration along three candidate calculations critical for the new,
scalable, Cartesian basis version of M-TIP: orientation matching, FFTs, and nonuniform FFTs. This
work, which was performed on Summit, represents the first step toward defining the SPI acceleration
strategy.

• Resource orchestration: The ExaFEL project aims at developing the capabilities required for
streaming the science data from SLAC to the computing facility, starting the analysis job on the
supercomputer, and reporting the results of the analysis back to the experimenters in quasi-real
time. This milepost designs and develops these capabilities and integrates them with the LCLS data
management system. This work was performed on Cori in collaboration with the NERSC and ESnet
teams.

FY21

• SFX merging with diffuse scattering: We will merge the analysis and simulation workflows for
Bragg reflections (CCTBX) and diffuse scattering (LUNUS), demonstrating the ability to concurrently
process the Bragg signal (structure) and diffuse signal (dynamics) and the ability to generate simulated
diffraction patterns that include the Bragg and diffuse intensity. This work will be performed on
Summit.

• Inverse modeling of the structure factors: We will implement the modeling cycle (forward
simulation with nanoBragg, parameter estimation with diffBragg) on Summit/Perlmutter. We will
implement this new capability to support: (1) highly performant execution with GPU kernels for
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diffBragg, (2) demonstration with experimental data, (3) modeling of multipanel detectors like the
Jungfrau 4M and ePix10K, and (4) if possible, Bayesian error estimates for the structure factors. We
will design for platform portability where possible (HIP).

• SDN data path expansion to last mile at SLAC and NERSC: We will demonstrate operational
support and deployment at scale for reserving SLAC, NERSC, and network resources to enable real-time
end-to-end workflows from SLAC to NERSC. The goal is to provide network performance predictability
for the transfer and saturate the capacity of the physical link between the LCLS beamlines and Cori.

FY22

• Code scaling on exascale demonstrator machine: The SFX workflow will be finalized and ported
to the exascale demonstrator machine. We will assess the scalability of SFX and identify performance
bottlenecks.

• Performance optimization of M-TIP: The M-TIP application will be finalized and ported to the
exascale demonstrator machine. We will assess the scalability of M-TIP and identify performance
bottlenecks.

• Workflow automation: We will demonstrate the ability to automate the coordination of workflow
resources to execute end-to-end workflows from SLAC to NERSC. This automation will coordinate
resources (e.g., reservation, real-time queues), the data flow (e.g., streaming, SDN path), and the
pipeline (i.e., the various steps in the reconstruction).

FY23

• SFX at scale on exascale demonstrator machine: We will finalize performance optimizations for
SFX and execute the SFX demonstration calculation on the exascale demonstrator machine by running
on roughly half of the exascale machine.

• SPI at scale on exascale demonstrator machine (stretch goal): We will finalize performance
optimization for M-TIP and execute the SPI demonstration calculation on the exascale demonstrator
machine by running on roughly half of the exascale machine.

6.4.4 ExaFEL: Progress on Early and Pre-Exascale Hardware

Performance on Summit

We evaluated weak scaling for nanoBragg on Summit by processing 420 images per node and changing
the number of nodes from 1 to 500. Figure 70 shows how weak scaling extends in this range and how string
scaling within a node performs when going from one to six accelerators.

Strong scaling was measured by calculating the wall time taken by the nanoBragg simulation of 100,000
patterns on Summit while varying the number of nodes. Figure 71 shows how the forward simulation scales
with minimal performance degradation up to at least 300 nodes.

7. NATIONAL SECURITY APPLICATIONS

End State: Deliver comprehensive science-based computational weapons applications able to
provide, through the effective exploitation of exascale HPC technologies, breakthrough modeling
and simulation solutions that yield high-confidence insights into at least three currently infeasible
problems of interest to the NNSA Stockpile Stewardship Program (SSP).

The National Security Applications within the ECP include projects (Table 58) centered on the stewardship
of the US nuclear stockpile and related physics and engineering modeling and scientific inquiries consistent
with that mission space. The projects are part of the ATDM program element of the DOE NNSA ASC

Exascale Computing Project (ECP) 141 ECP-U-AD-RPT 2021 00208



Figure 70: Weak scaling extends from 1 to 500 nodes, except for slightly ragged
task completion times above 200 nodes. Overall, we observe good strong scaling
within a node with little performance erosion going from one to six accelerators.

Figure 71: Wall time for nanoBragg simulation of 100,000 patterns vs. the
number of nodes. N is the number of ranks (cores) that share one GPU device.
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Table 58: Summary of supported NNSA L4 projects.

WBS
number

Short name Project short description KPP-X

2.2.5.01 Ristra ATDM LANL application KPP-2

2.2.5.02 MAPP ATDM LLNL application KPP-2

2.2.5.03 SPARC ATDM SNL application KPP-2

2.2.5.03 EMPIRE ATDM SNL applications KPP-2

program and are implemented at each of the three DOE NNSA laboratories. Each project has a specific
challenge problem target, namely a currently intractable 3D problem of interest. The goal of both Lawrence
Livermore National Laboratory’s (LLNL)’s Multiphysics on Advanced Platforms Project (MAPP) and
Los Alamos National Laboratory’s (LANL)’s Ristra project is to develop several integrated multiphysics
codes for the simulation of mission-relevant problems. The two projects from Sandia National Laboratories
(SNL) are developing the multiphysics codes EMPIRE to simulate the effect of electromagnetic pulses and
SPARC to simulate aerodynamic flows and associated impacts. For all four projects, scalability has been
a design priority from the beginning, and the ability of the new codes to scale to some significant fraction
of future machines is an objective. High confidence in physics fidelity has also been an objective from the
beginning, with development of novel multiscale and high-order algorithms and integrated verification and
validation. All four applications must exhibit efficient use of one or more architectures of the ASC Advanced
Technology Systems (ATS) located at the NNSA laboratories, as well as portability and high confidence
in physics fidelity. The current two NNSA ATS platforms are Trinity (KNL) and Sierra (V100 GPU), and
the next two ATS platforms are Crossroads and El Capitan; El Capitan is the NNSA-designated exascale
computer. The outcomes and products of the ATDM activity will be incorporated into the next generation of
integrated and high-performance ASC codes on advanced (i.e., next decade) architectures in support of NNSA
mission scope. The LANL approach is to concurrently develop a flexible framework, code infrastructure, and
physics components with multiscale algorithms. LLNL is developing new high-order algorithms to minimize
data motion relative to computation, which are then incorporated into production codes built on modular,
interoperable software layers. The SNL approach is built upon agile components as part of a comprehensive
tool kit, which includes a data model, an abstraction layer, discretization techniques, and high-quality
solvers implemented with performance-portable abstractions. The ECP NNSA applications work closely with
ECP software technologies team at each laboratory. Together, the three NNSA laboratories aim to deliver
applications that can address currently infeasible 3D problems of interest. These different approaches are
complementary, providing both peer review and risk mitigation. As part of the FY20 milestone, each project
team was instructed to perform a series of mission-relevant calculations in 3D using up to and including at
least 25% Sierra and either 50% of Trinity’s KNL partition or 100% of Astra—an advanced architecture
prototype with ThunderX2—and report on performance and portability and comparison with existing codes
performance on Commodity Technology Systems (CTS).

7.1 Ristra

The property and behavior of various materials under a wide variety of extreme conditions is central to
many applications within the realm of national security. Such modeling requires multiple length scales and
timescales and drive requirements for exascale computing. LANL is developing a next-generation multiphysics
code for national security applications that focuses on 3D multiphysics, mesoscale insight for extreme condition
materials, and high-energy density physics simulations.
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7.1.1 Ristra: Science Challenge Problem Description

Ristra, LANL’s next-generation code project, has taken a high-risk path that enables the exploration of
next-generation physics methods implemented by using novel computer science technologies with co-designed
abstractions that enforce a separation of concerns between the two disciplines. The benefit of this path is
greater agility, both in the code’s ability to incorporate new algorithms in physics and computer science and
respond to the anticipated increased diversity in application requirements.

The name Ristra—which means “string” in Spanish, but in a New Mexican context means a string of
chilis—was chosen to emphasize that the project’s aim was not to develop a single monolithic code but rather
a tool kit that connects a consistent suite of codes for different application domains.

The ultimate goal of the Ristra project is to create a set of codes that must:

1. solve multiphysics problems by using computational methods with characteristics of those required for
national security problems;

2. solve multiphysics problems efficiently on emerging HPC architectures leading to exascale;

3. provide a flexible, extensible, productive programming environment that features a separation of
concerns between complex physics expression and underlying HPC technologies, thereby enabling agile
response to future drivers from mission needs and computing technology; and

4. provide a realistic test bed for the evaluation of novel programming models and data management
technologies.

Computer science technologies that allow for the efficient use of emerging HPC architectures suggest a
need for physics algorithms that permit increased concurrency at many scales. This motivates a fresh look at
the numerical decisions made throughout the simulation process, from setup through analysis. With this in
mind, Ristra is casting a wide net across available physics algorithms for multiphysics simulation in addition
to an exploration of programming models for emerging architectures.

Ristra’s focus is on two application domains, both of which feature multiscale methods that will be an
important component of extreme-scale multiphysics simulations of the future.

• High-Energy Density Physics for Inertial Confinement Fusion. Ristra’s Symphony code is an unstruc-
tured multimaterial radiation hydrodynamics application that features a multiscale algorithm for the
radiation solve. A fully coupled low-order radiation hydrodynamics system is updated by a high-order
radiation solver that could be executed asynchronously.

• Multiscale Hydrodynamics of Materials in Extreme Conditions. Ristra’s FUEL code is an unstructured
multimaterial arbitrary Lagrangian-Eulerian (ALE) hydrodynamics code that can be coupled to complex
material models to take account of mesoscale physics, such as grain structure, in the dynamic response
of materials. Mesoscale modeling is computationally intensive, and the multiscale approach could
effectively use exascale-class systems and provide a promising target for data-driven ML techniques.

Two key challenges on the path to multiphysics computing at exascale and beyond are: (1) abstracting
details of underlying hardware and systems software from multiphysics code development and (2) solving
mission-relevant problems at multiple physical scales.

To address the first challenge, Ristra is developing a computer science interface called FleCSI that limits
the impact of disruptive computer technology on the development of multiphysics codes. FleCSI enables
the adoption of novel programming models and data management methods to address the challenges and
diversity of new technology.

Simultaneously, Ristra is exploring the use of multiscale numerical methods that offer improved physics
fidelity and computing efficiency in high-energy density (e.g., inertial confinement fusion) and low-energy
density (e.g., advanced materials and solid dynamics) regimes relevant to NNSA’s mission of stockpile
stewardship. Figure 72 provides an example of physics and methods that Ristra is undertaking.

In a multiphysics code, users must address a variety of discretization types (e.g., structured mesh,
unstructured mesh, and particle-based), as well as the need to operate them together. Therefore, an important
part of the project is Portage, a remap and link library that allows physical geometry and data to be
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Figure 72: Example of the multiple physics and computational methods that
Ristra is undertaking.

mapped between discrete representations. Portage has been developed as a stand-alone library that can
be readily extended to provide link capabilities between arbitrary computational physics codes but is also
sufficiently lightweight to serve as an inline remap within Ristra codes (e.g., for ALE in several of our reference
hydrodynamics codes).

Ristra has adopted a software architecture that emphasizes a separation of concerns between the compu-
tational physicists who must respond to a diversity in questions of interest and computer scientists who must
adapt to changing software and hardware computing technologies. That separation of concerns is implemented
through an open-source abstraction layer called FleCSI. FleCSI is a tool kit for building discretizations and
physics operators to support physics expression over an abstract data and execution model that can target
a variety of underlying parallel runtimes ranging from traditional MPI implementations to more capable
modern runtimes, such as the Legion programming system that originated at Stanford University and is
being actively developed at NVIDIA and LANL.

The FleCSI execution model is an asynchronous task-based programming model that is well-suited to highly
heterogeneous computer architectures and explorations of new, more asynchronous algorithmic techniques.
Specifically, the Ristra project is exploring novel multiphysics couplings in its codes, including several
multiscale algorithms that break the conventional operator split implementations of current multiphysics
codes into a more concurrent model that could benefit execution on extreme-scale computer platforms.

Figure 73: (Left) Weak scaling of the demonstration problem, including runs
at the target scales of 50% Trinity KNL, 25% Sierra, and 100% Astra. (Right)
Strong scaling for the demonstration problem on Sierra and Astra. Numbers are
normalized to CTS-1 performance at 625 nodes.

FleCSI introduces a functional programming model with control, execution, and data abstractions that are
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consistent with MPI and state-of-the-art, task-based runtimes, such as Legion and Charm++. The abstraction
layer insulates developers from the underlying runtime while allowing support for multiple runtime systems,
including conventional models such as asynchronous MPI. The intent is to provide developers with a concrete
set of user-friendly programming tools that can be used currently while allowing flexibility in choosing runtime
implementations and optimizations that can be applied to future architectures and runtimes. FleCSI’s
control and execution models provide formal nomenclature for describing poorly understood concepts, such
as kernels and tasks. FleCSI’s data model provides a low buy-in approach that makes it an attractive option
for many application projects because developers are not locked into particular layouts or data structure
representations.

For the FY20 milestone, Symphony was run on Sierra, Trinity, and Astra, and its performance and
memory usage were documented. A successful run of a demonstration multiphysics problem with Symphony
was run on 25% Sierra, 50% Trinity KNL, and 100% Astra. Symphony was also demonstrated with MPI and
Legion runtimes. Scaling results are shown in Fig. 73. Symphony is portable to MPI and Legion parallel
back ends and has run with both on a variety of platforms, including Sierra. In Fig. 74, MPI vs. Legion
strong-scaling behavior is shown for the demonstration problem on a smaller mesh.

Figure 74: Legion vs. MPI strong scaling of the demonstration problem on a
small mesh on Sierra.

FleCSI generally imposes negligible overhead relative to the underlying runtime. As anecdotal evidence,
when using a code with both FLeCSI/MPI and stand-alone MPI running a realistic five-material compression
problem on CTS-1, no discernible difference in runtime is observed. For Legion and the simple test case,
Legion can often be a factor of 2 slower in an initial implementation. Progress toward resolving this through
appropriate task granularity and grouping is underway. Hierarchical tasks are a potential path toward
back-end agnostic performance of the tasking model are available for us to explore in FleCSI 2.0 in the
future.

7.2 MAPP - Multiphysics on Advanced Platforms Project

The ATDM effort at LLNL has embraced two key themes: the use of high-order numerical methods and a
modular approach to code development. The LLNL next-generation effort is organized under MAPP. One
foundational component of MAPP is the Axom computer science tool kit, which provides infrastructure
for the development of modular, performance portable, multiphysics application codes. MARBL is a next-
generation application code built on the Axom base to address the modeling needs of the high-energy density
physics (HEDP) community for simulating high-explosive, magnetic, or laser-driven experiments—such as
inertial confinement fusion (ICF), pulsed-power magnetohydrodynamics (MHD), EOS, and material strength
studies—as part of the NNSA’s SSP (Fig. 75).
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Figure 75: Example MARBL high-order 3D simulations. From left to right:
radiation-driven Kevin-Helmholtz instability experiment, BRL81a shaped charge,
octet-truss high-velocity impact, and radiation-driven high-density carbon micro-
structure shock experiment.

MARBL was designed from inception to support multiple diverse algorithms, including ALE and direct
Eulerian methods for solving the conservation laws associated with its various physics packages. One
distinguishing feature of MARBL is the use of advanced, high-order numerical discretizations, such as
high-order finite element ALE and high-order finite difference Eulerian methods. This algorithmic diversity
encompasses the ECP simulation motifs of unstructured and structured AMR. High-order numerical methods
were chosen because they have higher resolution and accuracy per unknown compared with standard low-order
finite volume schemes and because they have computational characteristics that play to the strengths of
current and emerging HPC architectures. Specifically, they have higher Flops/B ratios, meaning that more
floating-point operations are performed for each piece of data retrieved from memory. This leads to improved
strong parallel scalability, better throughput on GPU platforms, and increased computational efficiency.

One key goal for MARBL is enhanced end-user productivity, including improved workflow for problem
setup and meshing, simulation robustness, support for uncertainty quantification and optimization driven
ensembles, and in situ data visualization and analysis. High-order ALE and Eulerian schemes have proven
to be more robust and should significantly improve the overall analysis workflow for users. The advanced
simulation capabilities provided by MARBL will improve user throughput along two axes: faster turnaround
for multiphysics simulations on advanced architectures and less manual user intervention.

The success of MAPP will ultimately be determined by the degree of adoption of its simulation tools by
the LLNL user community and beyond. To this end, emphasis at this relatively early stage of development has
been placed on adding physics and capabilities to meet the current state of the art that users demand from
today’s petascale production simulation codes. In the case of MARBL, this includes coupled multimaterial
radiation-magneto-hydrodynamics, thermonuclear burn for ICF fusion calculations, general EOS, material
opacities and electrical conductivities, simulation diagnostics and queries, in situ analytics and rendering,
and parallel computational and file I/O performance at a massive scale. Additionally, the performance of the
new codes on advanced architectures, such as the GPU-based Sierra and El Capitan systems, at LLNL is
critical. The portability of the software stack and long-term maintainability are also critical, placing stringent
demands on the integration and interoperability of high-quality production-level software libraries and tools.
Finally, MARBL will be the first demonstration of the viability of advanced high-order numerical approaches
for production multiphysics simulation at scale in the NNSA, and it has already produced first-of-a-kind
simulation results via such methods.

The LLNL ATDM code project represents a massive software development effort, incorporating multiple
physics, mathematics, and computer science packages into the overall integrated code. The project collaborates
with multiple ST projects to integrate these production-quality capabilities, including software developed
internally at LLNL, externally from the ECP, and in the broader open-source community. To facilitate this,
much time and effort were invested in developing a robust build, test, and documentation system for the
MARBL project, including preliminary use of the Spack package manager. Additionally, the project employs
the extensive use of continuous integration and nightly regression testing across multiple platforms via multiple
compilers to foster a culture of rigorously tested software developer contributions from a multidisciplinary,
geographically distributed team. As a result of this initial investment in software infrastructure and our
focus on maintaining a collaborative culture, MAPP has successfully integrated multiple packages and
capabilities into the code, including RAJA performance portability abstraction and Umpire host/device
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Figure 76: Node-to-node (a) strong-scaling and (b) weak-scaling studies for
a Lagrangian Triple-Point-3D problem on an unstructured NURBS mesh. Our
weak-scaling study scales out to 2048 compute nodes, comprising half of Sierra
and more than 80% of Astra. The annotations by each data point indicate the
weak-scaling efficiency with respect to the first data point in the series.

memory management, Ascent library integrated via Conduit and Axom datastore, HDF5 binary parallel
checkpoint/restart enabled via Conduit and Axom datastore, Jupyter notebook interface prototype enabled
using Conduit and Axom datastore, and performance monitoring with Caliper and SPOT tools. Additionally,
the project relies heavily on the MFEM and Hypre libraries for high-order finite element capabilities and
internode and intranode parallel performance.

The project has focused heavily on achieving high performance on GPU platforms by using a combination
of software abstractions and efficient “matrix-free” algorithms in close collaboration with the Center for
Efficient Exascale Discretization (CEED) CD center. The multiple C++-based packages in MARBL use
RAJA for parallel loop execution, and the high-order Eulerian Fortran-based package uses OpenMP. MARBL
uses Umpire for host/device memory management, including memory pools shared between packages. The
new MFEM 4.0 GPU abstraction developed under CEED was co-designed with our project to enable
interoperability with RAJA and Umpire for host/device execution and memory management. This co-design
process was essential for achieving GPU performance in the integrated MARBL code.

For the FY20 tri-lab milestone, LLNL’s MAPP team chose to run its scaling simulations on Sierra, Astra,
and CTS-1. The team has performed first-of-a-kind multiphysics simulations at large scale on Sierra, taking
full advantage of GPU acceleration. They successfully scaled high-order ALE hydro to half of Sierra and to
all of Astra. An example of one of the scaling study results is shown in Fig. 76 for a hydrodynamics triple
point problem.

This achievement also included:

• successfully integrating multiple GPU-capable libraries to enable performance portability, including
MFEM v4.0, RAJA, Umpire, and Caliper;

• achieving full code stack ports to Sierra and Astra platforms;

• achieving full GPU ports of high-order ALE and high-order Eulerian hydrodynamics;

• achieving >15× GPU node vs. CPU node speedup for high-order ALE hydro;

• achieving >10× GPU node vs. CPU node speedup for high-order direct Eulerian hydro;

• establishing detailed performance monitoring and tracking ability using Caliper and SPOT and auto-
mated performance testing; and

• developing a new scaling study capability for generating strong, weak, and throughput scaling data for
CTS and ATS platforms.
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Figure 77: HIFiRE-1, a prototypical reentry vehicle geometry.

7.3 SPARC

The Sandia Parallel Aerodynamics and Reentry Code (SPARC) application represents a revolutionary
hypersonic reentry simulation capability that captures the random vibration and thermal environments created
by the reentry of a vehicle into the earth’s atmosphere. SPARC incorporates the innovative approaches of
ATDM projects on several fronts, including the effective harnessing of advanced and heterogeneous computing
architectures via Kokkos, exascale-ready parallel scalability, uncertainty quantification, the implementation
of state-of-the-art reentry physics and multiscale models, the use of advanced verification and validation
methods, and the enabling of improved workflows for users.

The science challenge problem for SPARC is to perform a virtual flight test of a reentry vehicle in its
entirety to predict the structural and thermal response of the vehicle’s components under simulated reentry
environments. Performing this analysis includes simulating the flow field around the vehicle, including the
aft end and its wake, by using a turbulence model suited for hypersonic, unsteady turbulent fluid dynamics.
The thermal loads generated from the computational fluid dynamics simulation will be used to predict the
ablation and thermal response of the vehicle’s thermal protection system and internal components. The
structural loads generated from pressure and shear stress fluctuation predictions by the turbulence models
will be used to analyze the vibrational response of the vehicle and its internal components.

To meet mission needs, SPARC must be able to simulate reentry phenomena with different fidelities.
These different fidelities necessitate different turbulence modeling approaches and solver approaches, and they
could benefit from different numerical discretization approaches. Furthermore, SPARC must be applicable in
transonic, supersonic, and hypersonic speed regimes. This drives the need for a diverse set of physical models.

SPARC has supported multiple spatial discretization approaches since its inception. The original approach
for handling multiple discretization changed in favor of better support for next-generation platforms and to
have a more sustainable code design. However, using multiple discretizations is still viewed as critical to
support the many physical fidelities that the code is targeted to predict. SPARC implements structured and
unstructured cell-centered finite volume approaches, structured high-order finite difference, and unstructured
discontinuous Galerkin methods that satisfy the summation-by-parts (SBP) property and a continuous
Galerkin finite element method. Once the governing partial differential equations have been discretized in
space and time, a coupled set of nonlinear equations must be solved. SPARC uses different solvers from the
Trilinos package.

SPARC uses a block-tridiagonal line relaxation-based solver from Ifpack2 for the solution of linear
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Figure 78: Strong scaling for a generic reentry vehicle simulation.

systems [54]. The core computational kernels of this solver are implemented in KokkosKernels, and the
data migration and other ancillary capabilities reside in Ifpack2. Optimizations of the linear solve on GPUs
include team-based tridiagonal factorization/solve, improving data layout, norm kernel fusion, and atomic
updates in the block SpMV. Through these improvements, as much as a 2× improvement was demonstrated
in the linear solver on the ATS-2 platform on up to 256 GPUs. In support of the ATDM L1 milestone, a
synchronization bug was diagnosed that was causing segmentation faults and parallel-serial inconsistency
problems in Ifpack2/KokkosKernels, which manifested on the SNL ATS-2 proxy platform Vortex. Additionally,
an improved data packing algorithm was implemented by using CUDA multiple streams to prepare data for
MPI communication in Ifpack2.

In addition to supporting the ATDM L1 milestone simulations, the solvers team developed a new semi-
coarsening algebraic multigrid (AMG) linear solver variant for realistic problems (e.g., HIFiRE-1) that is much
more robust than previous AMG options. The key idea behind the new solver is to employ a combination of
structured semi-coarsening (i.e., avoids coarsening orthogonal to boundary layer) and line solves. It resulted
in 2–3× runtime improvements in the solution phase for realistic SPARC HIFiRE-1 problems (Fig. 77) over
other options that use Belos and point sparse formats. The SPARC team has worked with the Kokkos team
to identify and remove numerous unnecessary device synchronizations and exhaustively profiled MPI usage to
verify expected MPI use.

The SPARC code leverages Sacado, an automatic differentiation package in Trilinos, primarily for
analytic parameter sensitivity computations in support of sensitivity analysis, optimization, and uncertainty
quantification. The entire block-structured, cell-centered, finite volume residual computation and quantity-
of-interest postprocessors in SPARC are differentiated by Sacado to provide analytic sensitivities for model
parameters, such as free-stream boundary conditions and gas model coefficients. Sacado is interoperable with
Kokkos, enabling efficient and thread-scalable differentiations of Kokkos-based computational kernels that
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are portable across diverse CPU and GPU architectures.
The portability strategy for SPARC is to use the Kokkos programming model to implement domain-specific

data structures and abstractions for common mesh traversal patterns, then implement all physics code by
using those data structures and abstractions. This allows all the physics code to be platform-agnostic while
enabling excellent cross-platform performance by tuning a small amount of platform-specific code in the core
data structures and mesh traversal abstractions. Overall, 96.1% of the SPARC source is platform-agnostic as
measured via the Code Base Investigator tool. Additionally, SPARC leverages Trilinos components to provide
performance-portable linear solvers. Using this strategy, SPARC has successfully demonstrated portability
across CTS-1, Trinity, Sierra, and Astra and is an excellent example of the possibility of writing single-source
portably performant applications using Kokkos.

The choice of portability strategy for SPARC enables a few key platform-specific optimizations in ways
that are minimally intrusive to the physics code. Of particular importance is the ability to choose the
threading strategy, data layouts, and mesh iteration patterns per platform. For example, on Trinity, the
optimal approach for SPARC’s matrix assembly kernels is to use graph coloring to avoid race conditions
between threads, whereas on Sierra, an approach that leverages the high-performance hardware atomics to
maximize the number of appropriately interleaved memory accesses is optimal. Supporting these alternative
approaches requires no changes to SPARC’s physics code due to the portability strategy. Leveraging Trilinos
for linear solvers is also key. The Trilinos team has been able to use SIMD types inside solver implementations
to maximize performance on CPU platforms such as Trinity with long vector lengths while also maintaining
alternative implementations for Sierra that maximize GPU performance. Because this platform-specific
code is in Trilinos that SPARC accesses through a common interface, it enables sharing the cost of multiple
implementations across multiple projects.

Performance results for a generic reentry vehicle geometry are shown in Fig. 78 and Fig. 79 for strong
scaling and weak scaling, respectively. For strong scaling, with CTS-1 as baseline, Trinity is 0.8–1.2×, Astra
1.2–1.4× and Sierra is 2–8× faster. SPARC’s block tridiagonal linear solver is the primary limiter of strong
scaling. Some increase in elapsed time at the largest scales for Trinity and Sierra was observed. For weak
scaling, good scaling is observed for Trinity and Astra with sufficient work per node, and significantly more
work per node is required for good weak scaling on Sierra.

7.4 EMPIRE

The EMPIRE application is an advanced electromagnetic and plasma physics capability that will support
the analysis of electromagnetic pulse (EMP) phenomena. Validated computational simulation tools are
critical because many of these plasma environments must be extrapolated from what can be realized with test
facilities. The phenomena encountered in these environments require models of extremely complicated gas
chemistry, plasmas, and electromagnetic (EM) fields over a wide range of conditions. EMPIRE accordingly
includes particle (kinetic), fluid (continuum), and hybrid particle-fluid plasma representations to efficiently
represent a broad range of plasma densities and interactions.

EMPIRE has embraced SNL’s ATDM components vision to build on foundational capabilities developed
and deployed by other teams, particularly the discretization and linear solver technology deployed in Trilinos.
EMPIRE also incorporates the innovative approaches of ATDM projects on several fronts, including the
effective harnessing of heterogeneous compute nodes using Kokkos, the exascale-ready parallel scalability,
the implementation of state-of-the-art plasma physics, and the use of advanced verification and validation
methods. In doing so, EMPIRE has achieved the required portability across the three target ATDM
computing platforms—Sierra/ATS-2, Trinity/ATS-1, and Astra/Vanguard—with no platform-specific code in
the EMPIRE code base.

The science challenge problem for EMPIRE is to perform large-scale kinetic plasma simulations of an
experiment fielded at the National Ignition Facility (NIF) and Z. In this experiment, x-rays generated by NIF
or Z interact with surfaces to generate a plasma by the photoelectric effect. This simulation will demonstrate
the particle-based plasma representation capability in EMPIRE at large scale and builds upon the progress
made in the earlier validation of a simpler diagnostic fielded on NIF and Z. Models for surface emission,
space-charge limited emission, neutral blow-off, and particle collisions will be used, and the ability of EMPIRE
to scale to billions of elements and hundreds of billions of particles will be shown to achieve a resolution
fidelity beyond what is possible with the current plasma simulation capability.

Exascale Computing Project (ECP) 151 ECP-U-AD-RPT 2021 00208



Figure 79: Weak scaling for a generic reentry vehicle simulation.
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The EMPIRE simulations employ a combination of linear solvers and preconditioners from the Trilinos
Tpetra stack to solve Maxwell’s equations. The sparse linear algebra is provided by Tpetra (e.g., maps, vectors,
matrices, and data movement). The Belos library provides the Krylov solvers, specifically the conjugate
gradient (CG) method. The main preconditioner is a multilevel solver in MueLu that is specifically designed
for Maxwell’s equations. The fine-level smoother is a Chebyshev polynomial smoother whose computational
kernel is a sparse matrix-vector multiply. Two inner multigrid hierarchies are applied in an additive fashion.
For the milestone simulations, the field solve operators are constant over the course of the simulation, so the
preconditioner can be set up once and used repeatedly.

The ATS-2 GPU-based architecture presents several challenges to delivering scalable solvers for EMPIRE.
To fully exploit GPUs, algorithms must supply a much larger workload than CPU-based architectures. As
a result, the team has needed to consider significantly different data rebalancing requirements than with
CPUs. Another challenge has been surrounding the effective use of profiling and debugging tools. Profiling
and debugging tools are being developed and refined concurrently with the algorithms that can use those
tools, which has made addressing transient errors challenging. The solvers and KokkosKernels team put forth
considerable effort in identifying what was ultimately found to be a CUDA bug. A reproducer and bug report
were provided to NVIDIA’s compiler team.

The fluid and hybrid capabilities in EMPIRE leverage Sacado for computing analytic Jacobians of the
discretized finite element residual in support of Newton-based nonlinear solvers for implicit time stepping.
EMPIRE’s finite element assembly computations for each physics operator are differentiated by Sacado to
provide the corresponding Jacobian contribution, which are then assembled in the global Jacobian matrix.
Integrating Sacado with Kokkos enables portable performance of these derivative computations across
architectures. Furthermore, a hierarchical parallelism capability was developed for Sacado and Kokkos,
allowing fine-grained (i.e., warp-level) parallelism to be mapped across Sacado derivative computations,
resulting in substantially improved speedup over flat parallelism on NVIDIA GPUs for several key EMPIRE
physics discretization kernels relevant to hybrid simulations.

EMPIRE was started with performance-portable code in mind. The goal of performant-portable software
is to have code that is near in performance to an architecture-specific implementation (performant) with
little to no architecture-specific code (portable). EMPIRE achieves this through the Kokkos programming
model, which abstracts the hardware-dependent portions behind a consistent API. Addressing the notion of
portability is therefore quite simple because there is no architecture-specific code in EMPIRE directly, yet the
code will run on the different platforms simply by recompiling the code appropriately. All architecture-specific
features appear either in Kokkos, such as scatter views that switch between replication and atomics based on
hardware capabilities, or in solver parameter defaults that are tuned specifically for the multilevel solver to
optimize performance on each platform. In terms of platform-specific performance optimizations, several
algorithms in EMPIRE were changed to improve GPU computation. These were found to incur no overhead
on other platforms so are not considered platform-specific.

EMPIRE was tested across a wide range of platforms to gather performance and scaling data. On all
platforms, the MPI+Kokkos implementation was found to outperform the pure-MPI approach, and relative
scaling between platforms behaved as expected. A comparison of performance on all three target platforms
for the milestone target problem, presented in Fig. 80 and with CTS-1 included as a reference baseline,
shows that Sierra is much faster on a per-node basis (on the order of 8×) than the other platforms. On the
other hand, performance on Trinity/KNL lags significantly (on the order of half the expected performance)
primarily because EMPIRE cannot take advantage of vectorization on that platform due to its unstructured
mesh. Kokkos does not provide this level of optimization, which is a challenge that must be balanced against
portability because platform-specific code would be required to achieve such gains. Also, effort has not been
expended to optimize performance on Trinity/KNL because the team’s attention has moved to the even
greater challenge of performance on Sierra. There is a difference here between portability, which ensures that
the same code runs on each architecture, and performance, which is not guaranteed and typically requires
much more effort to achieve.

Figure 81 shows strong and weak scaling for each platform (CTS-1 for reference, Trinity/KNL, Sierra, and
Astra) divided by the two main components of each time step. These are the particle update—which includes
weighting the fields, accelerating the particles, moving the particles, and weighting the resulting currents to
the mesh—and the linear solve, which involves solving a linear system for the electric and magnetic fields.
Across all the machines, the particle update is two to four times more expensive than the linear solve but
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Figure 80: Strong scaling of the milestone target problem at 200 million elements
resolution compared across the milestone platforms.
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Figure 81: Strong- and weak-scaling results for the milestone target problem on
each platform with the algorithmic breakdown between particle update (circles)
and linear solve (triangles) shown for each run. Data were collected on up to
2,048 nodes on Sierra (47% of the total nodes), 5,120 nodes on Trinity/KNL
(52%), and 2560 nodes on Astra (99%).
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strong-scales nearly perfectly across all meshes and hardware architectures. On the other hand, the linear
solve does not strong-scale as well. Much work was done to improve the solver performance and identify
efficient preconditioning parameters on each system. This resulted in massive reductions in actual solve
times, approaching our goal of 10 solves per second at scale in several cases. However, the overhead of
communication and multigrid reductions is now more apparent in the solve as we near and exceed the scaling
limit for these problems. In production simulations, the balance between particle work and linear solver
work would be carefully considered to maximize total throughput, which is impossible in the context of these
scaling studies in which resolution and refinement ratios are fixed.

Looking beyond the deployment of ATS-2, the Kokkos-based approach that EMPIRE has pursued provides
a clear path to portability on the upcoming ATS-3 (Crossroads) and ATS-4 (El Capitan) systems. Initial
work is already underway on Kokkos to develop the infrastructure to support those systems. We anticipate
starting work to test EMPIRE on these systems by early FY22, depending on the finalization of the hardware
specifications.

8. CO-DESIGN

End State: Develop cross-cutting, motif-based, co-designed software technologies and integrate
them into applications, providing them with the potential to fully use exascale hardware technolo-
gies and achieve their challenge problem capabilities. Direct HPC vendors and R&D staff on the
key application characteristics that must inform the co-design of exascale software and hardware
technologies through proxy application software.

The CD activity includes six CD centers focused on specific computational motifs. These target cross-
cutting algorithmic methods that capture the most common patterns of computation and communication,
known as motifs, in the ECP applications. The current list of motifs includes structured and unstruc-
tured grids with AMR, dense and sparse linear algebra, spectral methods, particle methods, MC methods,
backtrack/branch-and-bound, combinatorial logic, dynamic programming, finite state machine, graphical
models, graph traversal, and map reduce. All of these motifs and others that might emerge over the lifetime
of the ECP—including ML methods, the focus of a recently added CD center—will be considered within the
CD activity with the exception of dense and sparse linear algebra, which is supported within the ST focus
area.

Each of the six funded CD centers (Table 59) focuses on a unique collection of algorithmic motifs needed
by two or more applications. The top collections of motifs (based on application requirements) were initially
targeted, resulting in corresponding CD centers. The goal of the CD activity is to integrate the rapidly
developing software stack with emerging hardware technologies while developing software components that
embody the most common application motifs. These co-designed components will then be integrated into
the respective application software environments for testing, use, and requirements feedback. This process
must balance application requirements with constraints imposed by the hardware and what is feasible in the
software stack to facilitate performant exascale applications.

In addition to the six CD centers, a Proxy Applications project is managed within the CD activity whose
mission is to improve the quality of ECP proxy applications, or “apps,”) and maximize the benefit received
from their use, such as by maintaining and distributing the ECP Proxy App suite. Proxy apps are tools to
explore algorithms, data structures/layouts, optimizations, and so on, as well as the associated trade-offs on
different architectures. Success is measured by identifiable lessons learned that are translated either directly
into parent production application codes or into libraries with a demonstrated performance improvement. An
application assessment project, which concluded in FY20, conducted unbiased evaluations of the capability,
performance and scaling, and performance portability of ECP application codes. This integration activity
assessed application predictive maturity (e.g., as guided by the SNL Predictive Capability Maturity Model)
and the integration of exascale technology through regular, independent application assessments.

8.1 Proxy Applications

The purpose of the ECP Proxy Applications project is to improve the quality of proxies created by the ECP
and maximize the benefit received from their use. To accomplish this goal, the project maintains a catalog
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Table 59: Summary of supported CD L4 centers.

WBS
number

Short name Project short description KPP-X

2.2.6.01 Proxy Apps ECP proxy applications N/A

2.2.6.02 Apps
Assessment

ECP applications assessment N/A

2.2.6.03 CODAR CD Center for online data analysis and reduction at the
exascale

KPP-3

2.2.6.04 CoPA CD Center for particle applications KPP-3

2.2.6.05 AMReX Block-structured AMR CD Center KPP-3

2.2.6.06 CEED Center for efficient exascale discretizations KPP-3

2.2.6.07 ExaGraph GraphEx CD center KPP-3

2.2.6.08 ExaLearn CD Center for exascale ML technologies KPP-3

of proxy applications4 and advises vendors and researchers in the selection and use of proxy applications.
The project also has a significant effort to understand whether the selected proxies accurately represent the
intended characteristics of their parent applications (e.g., memory use, computation, communication).

8.1.1 ProxyApps: The ECP Proxy App Suite

Release 4.0 of the ECP Proxy App suite includes 14 proxies that cover a wide variety of modeling and numeric
motifs as well as communication and I/O operations that span the breadth of ECP. The project website also
includes pointers to a set of representative problem inputs and parameters to help investigators run proxy
apps with inputs that represent production use cases.

The Proxy Apps team is also continuing its efforts to identify and highlight proxy apps for scientific ML
workloads. ML proxies are different from traditional proxies in other important ways. One obvious difference
stems from the fact that ML workloads often rely on a fairly complex set of third-party dependencies, such as
PyTorch or TensorFlow. This is contrary to the usual principle of creating simple-to-build proxies by avoiding
dependencies. Because such dependencies are practically unavoidable in the ML space, it is fortunate that
tools such as Spack are making it much easier to manage dependencies. Another difference comes from the
rapid pace of innovation and discovery in ML. Algorithms and methods that are popular today can be easily
discarded tomorrow, and the search for better training methods or model representations is a significant
focus of effort in the field. Hence, good proxies must be nimble to adapt to such changes, participate in the
innovation process, and help understand how such changes impact science workflows.

To date, five ML proxies have been identified that support hardware and software CD, programming
model exploration and innovation, and the development of numerical methods and algorithms. These proxies
are also likely to be useful for optimization, benchmarking, and education. More information about these
proxies is available on the project website.

8.1.2 ProxyApps: Assessment of Proxy/Parent Similarity

In FY20, cosine similarity was applied to evaluate node and memory behavior and communication (i.e.,
MPI) patterns for a suite of 10 ECP applications and proxies. This work on applying cosine similarity to
understand communication differences between proxy and parent applications was published previously [55].

Cosine Similarity

4https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite
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Cosine similarity is an ML technique that is heavily used in AI applications, such as automatic document
comparison and identification [56–58]. Within the ECP, it is used to quantitatively determine:

• whether a proxy represents its parent with respect to node and memory behavior,

• a minimal set of proxy applications that represent the composite behavior of the application space, and

• a minimal set of proxy applications that represent the behavior of the application space for specific
components of the architecture, such as memory, cache, and branching.

This can be done for essentially any system, but the initial FY20 application is for two Intel platforms.
Cosine similarity takes two vectors as input and calculates the angle (cosine) between them by using

properties of the dot product:

cos(θ) =
a · b
|a||b|

. (23)

The angle characterizes the distance between the two vectors, which can then be used to indicate the similarity
of the two vectors. Hardware performance counter data are used to form an application vector or signature.
For each system, the entire set of available and reliable performance events is used. An event is deemed
reliable by testing and inspecting results. Each application signature for each platform comprises hundreds of
performance counter events.

We look at cosine similarity between the the members of our suite by using all available and reliable
performance events as a signature, and we categorize these events based on component or function so that
we can look at application similarity based on each primary system component. Categorizing events into
performance groups provides an understanding of which proxies/parents comprise a representative workload
for each system component. For example, we can pick a minimal set of proxy and/or parent applications
that represent the cache behavior seen across the entire suite. Through this sort of analysis, we can also
identify which applications we should recommend to vendors and other researchers for exploring architectural
innovations for cache, memory, virtual memory, branch prediction, and so on.

Cosine similarity can be used to understand performance differences across many system parameters.
For example, one could use it to explore performance difference across operating system versions, compilers,
compiler optimizations, or application optimizations. We are currently working on comparisons across
architectures by creating a full performance vector for each application for each architecture and using that as
input to cosine similarity. For example, we would have an ExaMiniMD Broadwell vector and an ExaMiniMD
Skylake vector and compute the cosine similarity between them. This would indicate whether the overall
behavior on the two systems is different. If it is not, then no feature on the newer architecture changed the
performance as compared with the older architecture. If there is performance difference (i.e., little similarity)
between the two systems, we could look at the cosine similarity by using application signatures from the
various performance groups to identify which components affect the overall performance change.

Methodology

To understand proxy representativeness, we used the suite of proxy/parent pairs listed in Table 60. We
also included two proxies, pennant and snap, without their respective parent applications. Table 60 shows
the applications and the problems and input sizes used. We adjusted problem sizes to use around 40–50%
of the node memory for each system. All applications were compiled with the Intel 19 compiler by using
vectorization flags at optimization level O3.

We executed all applications by using MPI on only 128 ranks. This scale was chosen because it is large
enough to observe important communication patterns but not so large that jobs are forced to wait for days in
a scheduling queue to execute. To date, we have collected and analyzed data for two systems: Intel Broadwell
and Intel Skylake. We are currently working on the infrastructure for collecting data on IBM Power9 and
NVIDIA and AMD GPUs.

We used the Lightweight Distributed Metric System (LDMS) monitoring infrastructure from SNL to
collect all performance data (e.g., MPI/communication, node, memory, network). We used the PAPI and
Aries plug-in samplers to collect respective node and network performance data. In addition to computing
cosine similarity, we computed dozens of metrics from the performance counter data to help us understand
and validate the cosine similarity results. We also performed a bottleneck analysis by using the Intel Topdown
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Table 60: Applications and input problems.

Proxy/parent Domain Input line Input file
ExaMiniMD/ MDs -il in.snap.Ta.mod in.snap.Ta.mod

–comm-type MPI
–kokkos-threads=1

LAMMPS -i in.snap.Ta.mod in.snap.Ta.mod
miniQMC/ QMC -r 0.99 -g ’2 2 2’ N/A
QMCPack NiO-example.in.xml NiO-example.in.xml;

NiO-fcc-supertwist111-supershift000-S64.h5
sw4lite/ Seismology new gh.in new gh.inz

SW4
SWFFT/ Cosmology 15 2048 N/A

HACC params4x32 -n params4x32 -n
pennant Unstructured mesh hydro leblancx128.pnt leblancx128.pnt

snap Neutron particle transport inh0004t1a out4a inh0004t1a

ExaMiniMD LAMMPS MiniQMC QMCPack sw4lite sw4 SWFFT HACC pennant snap
ExaMiniMD 0.00 10.24 84.61 83.55 61.94 64.17 86.71 85.58 75.88 44.50
LAMMPS 10.24 0.00 75.12 73.95 53.63 56.50 79.66 78.51 70.97 34.97
MiniQMC 84.61 75.12 0.00 5.97 42.91 47.75 51.57 51.28 66.16 43.41
QMCPack 83.55 73.95 5.97 0.00 37.71 42.28 45.85 45.52 60.31 40.89
sw4lite 61.94 53.63 42.91 37.71 0.00 6.47 27.99 26.86 30.17 24.55
sw4 64.17 56.50 47.75 42.28 6.47 0.00 23.59 22.42 23.83 29.89
SWFFT 86.71 79.66 51.57 45.85 27.99 23.59 0.00 1.22 18.65 51.79
HACC 85.58 78.51 51.28 45.52 26.86 22.42 1.22 0.00 18.14 50.70
pennant 75.88 70.97 66.16 60.31 30.17 23.83 18.65 18.14 0.00 51.63
snap 44.50 34.97 43.41 40.89 24.55 29.89 51.79 50.70 51.63 0.00

Figure 82: Broadwell cosine similarity in degrees, full vector.

Microarchitecture Analysis (TMA), which we implemented within LDMS. These data are not reported here
for brevity, but they will be made available in the future on the ECP Proxy App project website.

Results

We define an application vector or signature as the performance data collected for a specific application on
a particular architecture. On each architecture, a full application signature comprises around 400 performance
event counts. Figure 82 shows the cosine similarity (COS) results for the Intel Broadwell system using all
available and reliable performance event counts (full vector) in the application signature. In this figure and
all of the following COS figures, colors are interpreted as follows.

• Green indicates good similarity. As the similarity decreases (i.e., the angle between applications becomes
larger), the shade of green becomes lighter.

• Yellow indicates some similarity but also some difference. Whether this is acceptable is based on the
intended use of either the proxy or the parent application.

• Orange indicates poor similarity. The two applications are more different than they are similar. The
shade of orange darkens as the similarity decreases (i.e., difference increases).

• Red indicates almost no similarity. These applications exhibit very different behavior on this architecture
or for this component.

The scale here was somewhat arbitrarily assigned. In researching methods for defining such a scale, no
rigorous quantitative methods were found. Validating and improving this assignment scheme is a focus of
ongoing work.
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ExaMiniMD LAMMPS MiniQMC QMCPack sw4lite sw4 SWFFT HACC pennant snap
ExaMiniMD 0.00 8.97 81.96 68.83 38.66 39.55 28.51 37.76 43.58 22.20
LAMMPS 8.97 0.00 81.38 68.47 38.60 39.33 29.50 38.49 42.40 20.45
MiniQMC 81.96 81.38 0.00 16.35 47.28 47.63 58.78 49.85 46.58 65.55
QMCPack 68.83 68.47 16.35 0.00 36.05 36.40 46.19 37.82 36.33 53.30
sw4lite 38.66 38.60 47.28 36.05 0.00 4.05 20.56 17.09 12.89 21.69
sw4 39.55 39.33 47.63 36.40 4.05 0.00 19.82 15.87 11.91 22.79
SWFFT 28.51 29.50 58.78 46.19 20.56 19.82 0.00 10.33 24.49 21.44
HACC 37.76 38.49 49.85 37.82 17.09 15.87 10.33 0.00 19.92 26.67
pennant 43.58 42.40 46.58 36.33 12.89 11.91 24.49 19.92 0.00 25.00
snap 22.20 20.45 65.55 53.30 21.69 22.79 21.44 26.67 25.00 0.00

Figure 83: Skylake cosine similarity in degrees, full vector.

In Fig. 82, the diagonal reflects the self-similarity of each application (e.g., the similarity between
ExaMiniMD and ExaMiniMD) in that the angle between them is zero. The next observation is that all of
the proxy/parent pairs have good similarity—they are all some shade of green. SWFTT and HACC have
the highest similarity. ExaMiniMD and LAMMPS are similar to each other but are very different compared
with any other application. This is also the case for miniQMC and QMCPack. SW4 and sw4lite have some
similarity with SWFFT, HACC, and snap (yellow entries). We refer to this as redundancy because if we
choose one of these applications and discard the other two, we would still represent all of the unique behavior
of the entire suite. Pennant and snap are dissimilar from each other, as expected.

Looking at the COS data from the Skylake system in Fig. 83, we see that the similarity between the
proxy and parent pairs remains good (green), although the magnitude of the angle between the application
signatures changes. For instance, the angle between ExaMiniMD and LAMMPS is smaller (more similar),
that between miniQMC and QMCPack and SWFFT and HACC is significantly larger, and that between
sw4lite and SW4 is essentially the same. Also, sw4lite, SW4, SWFFT, HACC, pennant, and snap are less
divergent from ExaMiniMD and LAMMPS than they were on the Broadwell architecture; this area in the
matrix is characterized more by yellow and orange blocks than by red blocks. MiniQMC remains a distinct
outlier compared with the other applications, but here QMCPack has more similarity than before—although
it is still more different than similar—to sw4lite, SW4, HACC, and pennant. We also can see that on Skylake
vs. Broadwell, snap is now much more similar to SWFTT, HACC, and pennant, transitioning from red
to green and yellow. These changes in similarity between application signatures (i.e., behavior) are all in
response to changing architectural constraints when going from Broadwell to Skylake.

Next Steps

Release 4.0 of the ECP Proxy App suite provides a high-quality set of proxy apps to represent ECP
workloads. The proxy apps team is continuing to expand and curate the catalog of proxies to ensure that
future CD efforts will have a rich set of proxies to draw from. They have also demonstrated the use of
cosine similarity to quantitatively compare proxies and parents to help answer the question of how well proxy
represent the true nature of their parents.

8.2 CODAR

The growing disparity between simulation speeds and I/O rates makes it increasingly infeasible for high-
performance applications to save all results for offline analysis. By 2024, computers are expected to compute
at 1018 operations per second but write to disk at only 1012 B/s: a compute-to-output ratio 200 times worse
than on the first petascale systems. In this new world, applications must increasingly perform online data
analysis and reduction—tasks that introduce algorithmic, implementation, and programming model challenges
that are unfamiliar to many scientists and that have significant implications for the design of various elements
of exascale systems.

CODAR, a CD center focused on online data analysis and reduction at the exascale, addresses this issue.
Working closely with ECP applications, CODAR is undertaking a focused process that targets common data
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analysis and reduction methods (e.g., anomaly detection, feature tracking, and compression) and methods
specific to particular data types and domains (e.g., particle and structured finite-element methods). The
team engages directly with providers of the ECP system software, programming models, data analysis, and
reduction algorithms, as well as applications, to understand and guide trade-offs in the development of
applications and software frameworks given constraints relating to AD costs, application fidelity, performance
portability, scalability, and power efficiency.

The goals of CODAR are to (1) reduce the development risk for the ECP application teams by investigating
crucial performance trade-offs related to the treatment of scientific results created by scientific models, (2)
produce high-performance implementations of data analysis and reduction methods, (3) enable the easy
and efficient integration of those methods with applications, and (4) contribute to the CD of effective
exascale applications and software. To accomplish these goals, the team produces infrastructure for online
data analysis and reduction; provides valuable abstractions for implementing and customizing data analysis
and reduction methods; imports, integrates, and develops essential libraries implemented by using these
abstractions; incorporates the libraries into scientific applications and quantifies accuracy and performance;
releases software artifacts; constructs application-oriented case studies; documents success stories and the
process applied to obtain them; and reports on CD trade-off investigations.

8.2.1 CODAR: Algorithms and Software Objectives

Software is partitioned into two pieces: (1) infrastructure for orchestrating online data analysis and reduction
workflows and running, collating, and analyzing CD experiments and (2) the development of high-performance
implementations of online data analysis and reduction methods that are inspired by unique data access
requirements and unfulfilled application needs.

Infrastructure: Cheetah, Savanna, Chimbuko

Cheetah enables CD experiments for improving performance and functionality of online analytics and
reducing exascale science. Cheetah is the interface for defining the CD experiments. Specifically, the
Cheetah component works to define a set of conventions and reusable scripts for conducting parameter sweep
experiments on different science application scenarios that are necessary for CD studies.

Savanna is the runtime that can launch and manage the individual CD experiments on current and
future extreme-scale systems. The role of the Savanna component is to isolate the definition of the set of
online workflows from the inaction and enforcement of those workflows and their policies. The transitions
between different scheduler systems, parameters set on command line vs. environment variables, and so on
are managed through the uniform service interface.

Chimbuko works with data provided by TAU to identify performance anomalies and save relevant
information in a window around the anomaly for further analysis. In particular, Chimbuko is capable
of capturing, analyzing and visualizing performance metrics for complex scientific workflows that include
online data analysis and reduction and relating these metrics to the context of their execution on extreme-
scale machines. This tool enables empirical studies of workflow performance during the initial application
development phase or when porting to a new computational environment.

Online Methods: Z-Checker, Feature Tracking Kit, MGARD

Z-checker is designed to assess lossy compression comprehensively offline and online in parallel for scientific
datasets. Because of the vast volume of data being produced by today’s scientific simulations and experiments,
lossy data compression that allows user-controlled loss of accuracy during the compression is a relevant
solution for significantly reducing the data size. However, lossy compressor developers and users do not have
a tool to explore the features of scientific datasets and understand the data alteration after compression in a
systematic and reliable way. Z-checker is an open-source community tool developed to fill this gap.

The Feature Tracking Kit (FTK) is designed to robustly extract, track, and visualize features as they
evolve in large-scale simulations. This kit fills a gap in the production visualization tools being developed
in the ECP software technologies area to associate detected features in adjacent time steps. This work was
inspired by the WDMApp project that must detect and track blobs and streamers in 5D gyrokinetic tokamak
simulations, such as XGC.

MGARD is a technique for the multigrid adaptive reduction of data. Special attention is given to the
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case of tensor product grids in which the team’s approach permits the use of nonuniformly spaced grids in
each direction, which can be problematic for many types of data reduction methods. one important feature
of CODAR’s approach is the provision of guaranteed, computable bounds on the loss incurred by the data
reduction and the preservation of quantities of interest and statistics.

8.2.2 CODAR: Performance Objectives

CODAR’s focus on the online data analysis and reduction motif means that a CODAR application typically
comprises one or more application components, analysis components, and reduction components that all run
simultaneously on the same or different nodes. Performance challenges can occur within any component
and/or as a result of communication among components. Decisions that must be made related to performance
include placing components across the cores within the nodes (heterogenous node usage) or running the
components in separate nodes (homogeneous node usage); mapping components to use CPU, GPU, and
other resources; choosing the types of memory to use within the nodes and across nodes for the different
components (e.g., NVRAM); and selecting online data analysis and reduction components (e.g., the lossy
compression routine to apply to ensure user-controlled accuracy is maintained) and the frequency with which
to apply them. The overarching approach to meeting these challenges is as follows.

1. Overall architecture: The application composition Savanna architecture allows us to configure and
experiment with alternative mechanisms and configurations on different platforms—including component
placements and memory type—and the performance data collection and analysis system (e.g., TAU
and Chimbuko) that provides performance feedback.

2. Application components: The performance of individual application components is out of scope for
CODAR. The team can document when individual components perform badly and communicate that
information to application developers, but addressing such performance problems is not in the CODAR
charter.

3. Data analysis and reduction components: Whenever possible, existing high-performance imple-
mentations of methods (e.g., SZ and ZFP for compression) are integrated. The team can document
when these components perform badly and communicate that information to the software technology
team, but addressing such performance problems is not in the CODAR charter. For the online data
analysis and reduction components that the team develops in its tool kit, the work to optimize these
components (e.g., MGARD) on the specific machines is undertaken.

4. Inter-component communication: The team leverage the ADIOS communication library for
communication between components. ADIOS uses specialized mechanisms to enable high-speed data
transfer between parallel components, such as shared memory mechanisms when processes are running
on the same node.

The Cheetah experiment management system allows an investigator to perform, collate, and analyze
experiments to identify performance bottlenecks, which can then either be addressed directly for internally
developed software or relayed to appropriate AD and ST teams.

The team’s metrics of success are application-dependent and include the ability to use online data analysis
and reduction methods to write information of sufficient quality to the file system at a rate that leads to
the application idling while waiting for I/O to complete. Additionally, adding the online data analysis and
reduction methods must fit within resource restrictions (e.g., cores and impact on application performance)
set by the AD teams. If the team can simultaneously satisfy all these resource restrictions, then it will be
able to provide the correct information at the correct time and place to accelerate scientific discovery.

8.2.3 CODAR: Co-Design Engagements and Integration Points

CODAR’s engagement with AD and ST teams consists of three activities: infrastructure integration and CD
studies for online data analysis and reduction; the development of application-inspired data analysis and
reduction methods; and investigations of the runtime support required for task parallel computation.

Application integration activities have so far focused on the WDMApp (§ 4.5), NWChemEx (§ 3.2), and
CANDLE (§ 6.2) projects.
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Table 61: CODAR KPP-3 goals and metrics.

Passing value Stretch value Tentative present value

6 12 1

Application-Inspired Methods

In addition to the infrastructure integration and CD studies, the team also engages with application teams
to identify their needs for novel data analysis and reduction methods. These are focused activities between
a small number of team members from CODAR and the application to develop methods that either fill
gaps in methods available from existing software technologies, cover different types of data (e.g., structured,
unstructured, or particle data), or exhibit unique data access patterns (e.g., multigrid or hierarchical access).

The application-inspired methods pipeline includes methods that are being developed into a production
capability, including FTK, which was inspired by WDMApp; the MGARD multigrid data reduction method,
which was inspired by combustion; and the performance anomaly detection methods, which were inspired
by NWChemEx included in Chimbuko. Additionally, activities in the exploration phase include developing
improved statistical metrics for compression quality analysis, which were inspired by ExaSky and WDMApp
and will be include in Z-checker, and numerical optimization-based compression, which was inspired by the
EXAALT project (§ 3.4). Two activities were stopped after prototyping: the functional data analysis topic,
which was inspired by WDMApp, and the hierarchical data analysis topic, which was inspired by ExaSky
(§ 5.2). Further development of the hierarchical data analysis methods for computing halo centers could be
undertaken by the ExaSky project and implemented in its CosmoTools package.

As part of the online data analysis and reduction method development, the team will provide benchmarks
and other artifacts to software technology projects. This community service includes the Scientific Data
Reductions Benchmarks [59] developed as part of the Z-checker activity.

Runtime Support for Task-Parallel Computation

CODAR worked to design and prototype a new MPI mechanism, MPI Comm launch, which allows a child
MPI application to be launched inside the resources originally held by processes of a parent MPI application.
Two important aspects of MPI Comm launch are that it pauses the calling process and runs the child processes
on the parent’s CPU cores but in an isolated manner with respect to memory. CODAR scientists used this
prototype to experiment with the use of the new construct and demonstrate its value for applications that
must run multiple components simultaneously in such a way that terminating one component does not cause
a computation to fail. This exercise thus constitutes a valuable CD exercise for exascale system software.

Work with CANDLE on DeepDriveMD

The CANDLE DeepDriveMD code [60] implements a sampling approach to study potential energy surfaces
of biological macromolecules. An ensemble of simulations are started, and the results are passed to a neural
network that discerns the optimal parts of phase space to explore next. As more results are obtained, the
neural network is periodically retrained. The current DeepDriveMD code couples the simulations, neural
network training, and simulation scoring tasks via the file system, which leads to significant inefficiencies. The
CODAR team is working with CANDLE to adapt the DeepDriveMD code to couple the various components
via ADIOS communications. Early results are promising; when running 96 simulations concurrently, order-of-
magnitude performance improvements are achieved relative to an implementation that retrains the neural
network after each batch of simulations. Current work is looking to understand scalability to much larger
sizes and to understand trade-offs between the staleness of neural network predictions and the quality of the
results obtained.

8.2.4 CODAR: Progress on Early and Pre-Exascale Hardware

Performance on Summit

We conducted numerous CD studies on Summit, some of which involved test codes and complete
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Table 62: CODAR code base.

Package name LOC Target exascale challenge problems Computational motifs

Cheetah ∼2,000 Launch and manage the execution of a set of CD
experiments on supercomputer platforms, as
specified by CD specification file.

Performance portability

Chimbuko N/A Performance metrics collection of scientific
workflows through performance tools and
correlating performance information collected for
different workflow components.

Performance portability

FTK 10,000 Feature tracking and extraction (to be used for
WDMApp; potential use for climate).

Data analysis

MGARD N/A Data reduction while preserving quantities of
interest and statistics; already used to compress
data for WDMApp; to be used for combustion.

Data reduction

Savanna N/A Run a multicomponent application (e.g., 1+
application modules, analysis modules, reduction
models) on a supercomputer platform.

Performance portability

Z-checker 40,000 Data reduction error analysis (already used to
assess compression errors for ExaSky, ExaFEL,
EXAALT, GAMESS; will also be used for
NWChemEx, QMCPACK).

Data reduction

applications. The work with DeepDriveMD was already mentioned, as well as online data analysis that
enables large speedups on a code that won a 2020 Gordon Bell award. Publications detail investigations of
compression quality trade-offs [61], work with Cheetah [62], and work with EFFIS [63]. Work with Chimbuko
that applied NWChem on Summit won the best paper award at the 2020 In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization conference [64].

Performance tuning of FTK continues with a focus on GPU performance. Strong scalability on CPU
behaves as expected, but because GPU kernel functions are 100× faster than their CPU counterparts, the
non-GPU code, including trajectory reconstruction, becomes the bottleneck. Work continues to address this
bottleneck for high scalability with GPUs on Summit.

Work on MGARD also continues with a focus on using GPUs to accelerate the “data refactoring”
operations associated with MGARD compression. The MGARD compression pipeline comprises data
refactoring, quantization and lossless compression steps. Running solely on a CPU, these steps have been
shown to run at roughly 80 MB/s, 17 GB/s, and 100 MB/s, respectively. On a V100 GPU on Summit, the
first two run at 10 GB/s and 250 GB/s. Current work will use a GPU-enabled lossless compressor (nvcomp)
to enable at least 10 GB/s throughput.

Next Steps

Our plans for the next year will focus on further developments of CODAR software and continued
engagements with applications. Our milestones are as follows.

• December: CD reports, Chimbuko release, Z-checker release.

• March: FTK release.

• June: Cheetah/Savanna release.

• September: MGARD release.
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8.3 CoPA

The ECP Co-Design Center for Particle Applications (CoPA) is addressing challenges for particle-based
applications to run on upcoming exascale computing architectures. This scope is partitioned into four “sub-
motifs”: short-range particle-particle interactions (e.g., those which often dominate MD and SPH methods),
long-range particle-particle (e.g., electrostatic and gravitational) interactions, PIC methods, and linear-scaling
electronic structure and quantum molecular dynamics (QMD) algorithms. The crosscutting co-designed
technologies fall into two types: proxy apps (e.g., ExaMiniMD, ExaSP2, CabanaMD, and CabanaPIC) and
libraries. Libraries are modular instantiations that multiple applications can use or be built upon and include
the Cabana particle library, PROGRESS/BML matrix library packages for QMD, and the SWFFT and
fftMPI parallel FFT libraries. Success is measured by the adoption by existing or newly developed production
codes with both productivity and performance benefits.

8.3.1 CoPA: Algorithms and Software Objectives

PROGRESS/BML

The QMD capabilities are included in a computational framework that aims to foster developments
in computational chemistry and electronic structure packages. This framework consists of two libraries,
PROGRESS and BML, in which the computational developments are performed. The Parallel, Rapid O(N),
and Graph-based Recursive Electronic Structure Solvers (PROGRESS) library is a FORTRAN library that
can be used for general purpose quantum chemistry calculations. The basic matrix library (BML) package
provides a common application programming interface (API) for linear algebra and matrix functions in C and
Fortran, targeting those operations and use cases that commonly arise in quantum chemistry codes. Linear-
scaling electronic structure applications rely on sparse linear algebra and require hand-tuned implementations
of sparse matrix operations. Since existing libraries for sparse linear algebra—such as MKL, ACL, and
NVIDIA’s CUDA sparse Matrix Library (cuSPARSE)—are limited and lacking in performance, BML was
developed to addresses this challenge by offering high-level abstractions for matrix operations independent
of the underlying data structures and algorithms. The BML API is matrix format independent. Dense,
ELLPACK-R sparse, and CSR sparse matrix data types are available, each with different implementations,
and a new blocked format, ELLBLOCK, is currently under development. PROGRESS relies entirely on BML
for algebraic operations, so although quantum chemistry and electronic structure algorithms and calculations
are outlined in PROGRESS, the underlying mathematical manipulations are all performed in BML. At
the application level, multiple codes will benefit from the new solvers (i.e., techniques) developed within
PROGRESS. The current focus is on low-level BML library implementations on accelerated architectures
(e.g., GPUs).

Cabana

The CoPA particle tool kit Cabana is a collection of software packages that will allow scientific software
developers targeting exascale machines to develop scalable and portable particle-based algorithms and
applications. This tool kit provides an open-source implementation of a variety of basic particle-based
algorithms and data structures applicable to a wide range of application types, such as PIC and its derivatives,
MD, and SPH codes. Cabana is written in C++ and is usable by application codes written in C++, C, and
Fortran.

Cabana provides native particle data structures, parallel programming APIs, and algorithm implemen-
tations by using those data structures. These algorithms will span the space of particle operations needed
to support each relevant application type. This includes intranode (i.e., local and threaded) operations on
particles and internode (i.e., communication between nodes) operations to form a hybrid parallel capability.
The initial set of algorithms sort particle build lists of neighboring particles, exchange particles distributed
across a set of nodes (i.e., a halo exchange), interpolate between a set of particles and an underlying mesh or
vice versa, and provide a variety of long-range solvers. Efforts are currently underway to add functionality,
including load balancing. From the perspective of users, these data structures and algorithms can then be
integrated into an application as building blocks for a wide variety of particle-based physics algorithms.

Cabana algorithms are built on parallel loop constructs, which ensure code-it-once performance portability
on pre-exascale and anticipated exascale platforms. The tool kit will be interoperable (e.g., easily permits
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linking and allows for simultaneous use) with other ECP scientific computing libraries that the user may
leverage for other needed services not provided by or in the scope of the Cabana tool kit. Using Cabana with
other ECP software technologies should facilitate the composition of scalable particle-based application codes
on these new architectures.

ExaMiniMD/CabanaMD

ExaMiniMD/CabanaMD are extensible MD proxy apps with a modular design to enable experimentation
with different interatomic potentials, time integrators, neighbor/cell list algorithms, and diagnostic compu-
tations, including new parallel algorithms at either the internode (MPI) or intranode (primarily Kokkos)
level. The parent LAMMPS MD code, used in the EXAALT ECP project (§ 3.4), has a similar modular
structure and MPI-level parallelism based on a spatial decomposition of the simulation domain. To accurately
model tungsten-based fusion materials, EXAALT requires a performance-portable implementation of the
spectral neighbor analysis potential (SNAP). Although ExaMiniMD was the initial MD proxy app, the newer
CabanaMD provides full integration with the Cabana particle tool kit. Both provide useful platforms for
development and a compact expression of use cases that can be used for vendor engagement and experimenta-
tion. Code developed in ExaMiniMD was ported directly into the parent applications code (LAMMPS) and
also into the Cabana library where it is tested with CabanaMD (e.g., neighbor list construction algorithms).

CabanaPIC

CabanaPIC is an extensible PIC proxy app built upon the Cabana library and designed to enable
experimentation with computational algorithms for particle-grid interactions and long-range Coulomb forces.
Additionally, CabanaPIC is a scalable computational test bed for the implementation of new solution
algorithms for nonlinear plasma physics.

SWFFT/fftMPI

Electrostatic and gravitational interactions arise in many particle-based applications. Since a direct
N2 calculation is neither practical nor necessary, long-range (e.g., Poisson) solvers are required. Although
several methods, including particle-particle particle-mesh (PPPM, or P3M) and particle-mesh Ewald (PME),
use FFTs, others, such as the fast multipole method (FMM), do not. As an initial step toward a general
long-range solver library that enables the user to readily switch between and evaluate different algorithms
for their particular use cases, the team began by extracting custom parallel FFT implementations from
applications partners and evaluating their use in other applications. SWFFT is a 3D complex-to-complex FFT
library based on the distributed FFT originally developed for the cosmology code HACC. It was developed
to run very large 3D complex-to-complex FFTs (e.g., of order 1012 with a relatively low memory overhead,
excellent scalability, and good performance). Using SWFFT makes it easy for other applications to also
use advanced Poisson solver techniques tailored to their particular needs. Similarly, the fftMPI library was
created by extracting the FFT kernels from the LAMMPS code and repackaging them as a stand-alone library
with supporting test harnesses and documentation.

8.3.2 CoPA: Performance Objectives

PROGRESS/BML

The challenge is to develop libraries that are portable across the range of available multicore, manycore,
and hybrid accelerated architectures while still supporting a wide range of compilers (e.g., GNU, Intel,
IBM, PGI, Clang, . . . ), low-level linear algebra implementations (e.g., BLAS, MKL, ESSL) and accelerator
programming options (e.g., MAGMA, OpenMP off-load, cuSPARSE/cuBLAS, SLATE). This is exacerbated
by the varying maturity of compliers and the underlying hardware (e.g., for OpenMP off-load). The general
strategy has been to keep up with the current state of maturity and invest in similar technologies that can be
readily converted rather than committing to any single specific programming model or math library.

Cabana

One fundamental challenge of developing a particle library is the programming of loops over complex
particle data layouts in a flexible and performance portable fashion, recognizing the fact that most particle-
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pushing algorithms are memory-bound. The aim is to allow users to program with a pool of kernels to
compose different algorithms or the same algorithm with different flavors. The implementation strategy is to
take advantage of modern C++ functional and metaprogramming techniques to create a flexible design of the
software library that exhibits performance on a variety of architectures. In the team’s implementation, the
data structures and particle loop composition build on the Kokkos library to enable performance portability
across different devices. This strategy allows us to explore and develop different particle data layouts,
threading models, and code that might vectorize more easily on modern architectures and allows us to make
these developments accessible to library users. As a result, users can compose their application with the
Cabana library and compile it with cross-platform support, creating a single implementation that can both
execute and perform on expected exascale platforms. Simple kernels and representative mini-applications
(e.g., for MD and PIC) built on Cabana are used to track performance and identify and address any gaps
that arise.

ExaMiniMD/CabanaMD

ExaMiniMD and CabanaMD are being used to experiment with new hardware capabilities, such as
NVIDIA’s shared memory (SHMEM). MD communication kernels are being reimplemented with an SHMEM
option to test performance against conventional MPI. The development of new algorithmic options for MD
that have superior performance on highly threaded hardware that does not support fast atomics (e.g., Intel
KNLs) is also being tested. Although this work is driven by LAMMPS, it mostly involves internal Kokkos
code and will thus benefit other Kokkos-based applications within the ECP.

CabanaPIC

CabanaPIC is being used to explore the implementation of new solution algorithms for nonlinear plasma
physics. These equations are inherently stiff, and new solution algorithms are required to attain the timescales
required by the WDMApp application.

SWFFT/fftMPI

SWFFT and fftMPI are designed for large distributed 3D FFTs. Slab-decomposed parallel FFTs are
not scalable to very large MPI ranks but require only one “all-to-all” communication. On the other hand,
data partitioning across a 2D subgrid (“pencil” decomposition) are scalable but require multiple “all-to-all”
communication steps. Additions to fftMPI include: (1) an option to perform data rearrangement as a one-step
pencil-to-pencil transpose (LAMMPS style) vs. a two-step pencil-to-block, block-to-pencil (HACC style)
operation and (2) a method to auto-tune for optimal performance on a particular FFT size and processor count
by scanning a set of available algorithmic and parameter choices. These will be back-ported to LAMMPS once
further CoPA benchmarking is complete. Within CoPA, SWFFT and fftMPI are used by the Cabana-based
long-range solver effort. Because they are currently CPU-only, new options are being examined, namely
heterogeneous node support using both CPU and GPU and threading 1D FFTs for GPUs and multicore
CPUs.

8.3.3 CoPA: Co-Design Engagements and Integration Points

Applications

The closest engagements are with four applications with whom personnel are shared. These AD projects
and relevant codes are: ExaSky (HACC) (§ 5.2), EXAALT (LAMMPS and LATTE) (§ 3.4), WDMAPP
(XGC) (§ 4.5), and ExaAM (ExaMPM) (§ 3.5). The PROGRESS/BML libraries were integrated into LATTE,
and the team works closely with EXAALT members to co-design new capabilities and modifications, as
needed. As discussed previously, libraries and proxies were extracted from HACC, LAMMPS, and LATTE
(ExaSP2), and the PIC-related algorithm kernels developed in the Cabana library are designed to be usable
by XGC, WarpX, and ExaMPM. The interactions with these ECP applications have been ongoing since the
library design phase and continue through the current development and eventual deployment. ExaMPM is
a new Material Point Method application code that is being co-designed in parallel with Cabana. WarpX
has motivated the development of a mini-PIC app based on Cabana. XGC is a legacy code that is being
used to guide the Fortran interoperability design strategy; the successful performance portability already
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obtained by using Cabana for the electron push bottleneck of XGC has motivated their team to begin using
the XGC/Cabana version for production runs on Summit. AD interactions span inputs on the design of data
structures and programming interfaces to algorithmic content and integration with mini-apps and kernels
representative of the applications. The EXAALT team has provided algorithmic and interface input to
Cabana development for MD applications, provided performance numbers for relevant computational kernels,
and is in the process of investigating Cabana performance by using the ExaMiniMD proxy. The availability of
enhanced FFTs in LAMMPS will be useful for the EXAALT project in conjunction with the LATTE DFTB
code, which has its own Coulombic solver, and materials modeling for charged systems (UO2 fission fuel).

In a collaboration across CD centers, the potential integration of the Cabana and AMReX libraries for
block-structured AMR with particles has been discussed. Although a direct coupling has not been achieved,
the MFIX-Exa (§ 4.4) project, which was built on AMReX, has adopted Cabana algorithms to construct
neighbor lists on GPUs. In another collaboration with AMReX, the team has integrated SWFFT to solve the
discrete Poisson equation on a single level of refinement and demonstrated that Nyx, the ExaSky cosmology
code built on AMReX, can build and run by using the SWFFT solver. The fftMPI library is being used by
the WarpX (§ 4.6) application (Rob Ryne) for an initial stage in their modeling workflow.

ExaMiniMD and SWFFT are part of the ECP Proxy Applications suite and were used by the ECP Proxy
Applications project (§ 8.1) in their first quantitative performance assessment by comparing their computation
and memory behavior with their parent applications: LAMMPS and HACC, respectively. ExaSP2 is also in
the ECP Proxy Applications catalog, and in response to multiple requests, the team has also contributed a
lightweight PIC proxy, CabanaPIC, as an early test of the Cabana library.

Benchmark/Bake-Off Problems

The successful engagement with XGC has driven the need to incorporate benchmark and bake-off problems
into the CoPA CD process. In this case, a benchmark/bake-off problem is an application-specific problem that
isolates the section in the application code (subroutine/algorithm) that is the focus of the CD engagement.
In this way, an apples-to-apples comparison can be made before and after code refactoring or adoption.

Software Technologies

The MAGMA library was successfully integrated into BML for node-level dense matrix operations on GPUs.
In the move to a more distributed approach, the SLATE library will be explored for dense distributed matrices.
The team is aware of the performance evaluation of the current version of SLATE for EXAALT/LATTE and
will learn from the experience. Performance of BML was assessed by using the Roofline/Advisor performance
tools. This evaluation will be revisited periodically as more capability is added. In the move to the matrix
operations to run on accelerated architectures, there will be more interaction with the OpenMP project for
the off-load capability. The team will also explore the new capabilities offered by the MPI project in its
distributed approach.

The Kokkos library is a core dependency of ExaMiniMD and the Cabana library. Kokkos provides the
basic Cabana memory allocation utilities, some data structures, portable performant parallel loop constructs,
and data layout options for different hardware types that Cabana uses to represent particle data and
implement algorithms and operations on particle data. Cabana developers have engaged and continue to
engage extensively with the Kokkos development team, including the PI, with Cabana developers, providing
feedback and requesting Kokkos changes, as well as Kokkos developers providing code changes for Cabana.
Additionally, other ECP application and software teams using Kokkos are being engaged to develop a broader
knowledge base and set of best practices for using the library.

fftMPI is currently being analyzed and benchmarked by the SLATE software project, and discussions
with both of the new ECP FFT projects (HEFFTE and FFTX) have also occurred. They will use fftMPI as
a baseline in their benchmarking and new algorithm development.

Vendors

The team members have participated in Intel, AMD, and Cray deep dives/hackathons, using the BML
library and ExaSP2 and ExaMiniMD proxy apps with their simulators. The team participated in the
National Energy Research Scientific Computing Center (NERSC) GPU hackathon using the Cabana library.
Team members have participated in the NVIDIA Summit on Summit/Sierra (SoSS) meetings and biweekly
conference calls per GPU issues on Summit and Sierra. The team held videoconferences and in-person
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Table 63: CoPA KPP-3 goals and metrics.

Passing value Stretch value Tentative present value

7 14 8

Table 64: CoPA code base.

Package name LOC Target exascale challenge problems Computational motifs

PROGRESS/BML 70,900 EXAALT (LATTE) Sparse/dense linear
algebra

ExaSP2 3400 EXAALT (LATTE) Sparse/dense linear
algebra

Cabana 10,000 ExaAM (ExaMPM), WDMAPP (XGC) Particles, Long-Range
Solvers

ExaMiniMD 6200 EXAALT (LAMMPS) Particles

CabanaMD 6500 EXAALT (LAMMPS) Particles

CabanaPIC 3000 WDMAPP, WarpX Particles, Particle-Grid
Interactions

SWFFT 3600 ExaSky (HACC) FFT

fftMPI 6400 WarpX FFT

meetings to discuss potential use cases for new PathForward technologies. Team members have participated
in the Aurora workshop and online, as well as the Frontier workshop, in preparation for porting libraries and
proxy applications to the exascale architectures. Although the team anticipates that the Kokkos library will
be transferable, the choice of AMD for the Frontier GPU will require a comparable deep engagement with
AMD comparable with SoSS with NVIDIA.

8.3.4 CoPA: Progress on Early and Pre-Exascale Hardware

Performance on Summit

PROGRESS/BML

New capabilities that were added to PROGRESS/BML include the following.

1. New sparse formats were added for use by application partners and performance. CSR and ELLBLOCK
formats and methods were added to BML. They are now available on the CPU by using OpenMP with
GPU methods to be added in FY21. ELLBLOCK provides for better performance by allowing the
Hamiltonian matrix to be split into multiple variable size blocks.

2. A parameterized model Hamiltonian benchmark capability was added that allows for the creation of
model Hamiltonian Matrices for metals, semiconductors, and biosystems/soft matter for benchmarking
BML matrix formats for matrices of increasing size. The required parameters are four coupling
parameters, four on-site energies, a decaying exponential parameter, and a randomization factor.

3. Performance for dense eigensolver calculations on GPU was improved by using the faster cuSOLVER
(NVIDIA) instead of MAGMA’s diagonalization. In Fig. 84, a comparison of cuSOLVER for diago-
nalization and dense SP2 using MAGMA on a Summit node for Hamiltonian matrices of increasing
size is shown along with GPU performance and utilization. The optimal algorithm depends on the
architecture and matrix size.
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Figure 84: GPU performance and utilization for dense eigensolver vs. dense
SP2 using MAGMA on a Summit node. The dense eigensolver uses NVIDIA’s
cuSOLVER. SP2 uses MAGMA for matrix-matrix multiplications.

Figure 85: Performance of sparse formats for SP2 on Summit Power9 CPU.
CSR and ELLPACK have similar performance for biosystems of increasing size,
whereas ELLBLOCK shows better performance for larger matrix sizes.
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Figure 86: Roofline analysis of the XGC electron push kernel on Summit.

Table 65: Speedup using PROGRESS/BML for biomolecular simulation perfor-
mance on Summit node.

SARS-CoV-2 Number Number No PBML PBML PBML
system atoms orbitals time (s) time (s) speedup

NPS3 Macrodomain 2557 6393 57 6 9.5
RBD 3018 7711 99 9 11
RBD + Water Layer 6038 13 743 553 36 15

4. Efficient O(N) sparse solver performance on Summit a Power9 CPU is shown in Fig. 85. Based on
bio-system Hamiltonians of increasing size, improved CSR and ELLPACK show similar performance,
and ELLBLOCK performs best.

5. The BML GPU off-load strategy is designed for exascale. An OpenMP target with native kernels is
being used for sparse formats for performance. Third- party libraries are being used for dense formats
(e.g., MAGMA, cuSOLVER, cuBLAS). Options when building allow for either CPU or GPU, where
data are local.

6. A distributed memory strategy was designed to leverage serial BML capabilities as follows. Implemen-
tation and testing are planned for FY21. Two approaches are being considered. The first, distributed
linear algebra, will use 2D square submatrices, the SUMMA algorithm for matrix-matrix multiplications,
and will rely on SLATE or ELPA for dense eigensolver calculations. At the submatrix level, matrix
operations will be performed by using BML. The second approach, density matrix divide and conquer,
will divide the system into overlapping submatrices by using graph partitioning or another method and
combine for the final result.

The EXAALT interaction has resulted in PROGRESS/BML adaptation and optimization following
bottleneck eliminations and the addition of new features. Exploration of NVIDIA’s Multi-Process Service
(MPS) for small matrices (<1000) on GPU resulted in maximum oversubscription of seven processes per
GPU and 1.8× improvement in throughput.

A PROGRESS/BML COVID milestone effort developed a quantum mechanical/molecular mechanical
(QM/MM) capability for long-duration biomolecular simulations. NAMD and LATTE/PROGRESS/BML
were coupled for this effort. Simulations of SARS-CoV-2 proteins were performed in support of therapeutic
strategies. Using CoPA’s PROGRESS/BML libraries with LATTE resulted in a 10× speedup on a single
Summit node (CPU/GPU) compared with LATTE without PROGRESS/BML (Table 65).

Cabana

Algorithmic development and performance optimization of the Cabana particle library has primarily
focused on the Summit computer system at ORNL. Algorithm development has focused on the following areas:
buffered_parallel_for to allow for massive particle counts while mitigating CUDA UVM page faults, new
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tree-based neighbor list capabilities based on ECP ST library ArborX, adding native periodic boundary
support for MD-like neighbor lists and communication, long-range solvers, and improved particle-grid support.

Performance improvements in Cabana have focused on the following areas: MPI pack/unpack performance
improvements with NVIDIA with impacts on migration and halo exchange and promoting coalescing with
Array of Structures of Arrays (AoSoA), assessment of communication patterns within partner applications,
propagating binning/sorting enhancements to the remainder of library and potentially Kokkos::BinSort,
and deploying neighbor list and sorting/binning performance tests and deploy/improve on Summit. The use
of the Kokkos portability layer has proven essential for using the GPUs on Summit.

Other Applications

CoPA’s LAMMPS/SNAP contribution included an exploration of rendezvous algorithms for the LAMMPS
setup and SNAP improvements. The rendezvous algorithms require decomposition across processors. Im-
provements resulted in a 4.5× speedup on one node, a 940× speedup on 256 nodes, and 1720× on 48,000
nodes (3 to 4 million MPI tasks). All tested problem sizes ran faster. SNAP improvements included memory
layout change between kernels via transpose operations, refactored loop indices and data structures, refactored
kernels to avoid thread atomics and the use of global memory, used Kokkos hierarchical parallelism and
GPU memory, fused kernels to eliminate data structures and reduced memory use, added new data layout to
enforce perfect coalescing and load balancing, symmetrized data layouts to reduce memory overhead and
use of thread atomics (CPU/GPU), and precomputed certain parameters. This resulted in a Kokkos/SNAP
speedup on Summit of 3.7× in FY20, which is a 21.7× cumulative speedup over the baseline on a single V100
GPU.

Performance enhancements to the HACC code have focused on several areas: the use of DPC++/Sycl
for porting CUDA code to pre-Aurora hardware; the exploration of OpenMP Target Off-Load for GPU
(OMPT) for portability, although not performant, subgroup concepts within OpenCL; and the exploitation of
ArborX for CosmoTools analysis. ArborX is a parallel MPI/Kokkos library dedicated to spatial indexing and
geometric search algorithms.

Activity on the XGC code has continued to focus on the C++ port of key computational kernels. The
electron push and ion/electron scatter kernels were converted by using Cabana/Kokkos, and the collision
kernel uses Kokkos. These conversions resulted in a 12 % overall performance gain on Summit. Roofline
analysis is shown in Fig. 86.

Next Steps

PROGRESS/BML

FY21 plans include implementing distributed memory parallelism, continuing to develop and optimize
for GPU accelerator architectures, fully integrating one sparse format and performant for BML on GPU,
demonstrating the use of BML in MGmol for density matrix divide and conquer, continuing to integrate with
LATTE and other partner applications, adapting libraries to pre-exascale and exascale architectures (Aurora
and Frontier), and finishing COVID QM/MM NAMD-LATTE/PROGRESS/BML efforts.

Cabana

CoPA/Cabana FY21 milestones are driven by application engagement. Foremost is a focus on Frontier and
Aurora platforms for exascale delivery with the performance milestone due on September 30, 2021. Because of
the tight engagements, the support of WDMApp and ExaAM simulation capabilities will be emphasized with
a library release milestone due on June 30, 2021. MD algorithmic development (EXAALT) will continue with
the demonstration of scalable and performant halo exchanges, long-range solvers, tree-based neighbor lists,
and ML potentials in CabanaMD with the goal of incorporation into LAMMPS. Support for HACC analysis
tools and developing a main compute kernel proxy app based on Cabana will be delivered. CabanaPIC will
be enhanced to explore the implementation of advanced algorithms for plasma simulations, which has been a
main interest of our growing external collaborations.

Exascale Philosophy/Readiness

Recognizing the importance of data layout and data movement on exascale architectures, both the
Cabana and Progress/BML libraries are designed for exascale by optimizing memory usage. Cabana uses
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the generalized concept of AoSoA, whereas Progress/BML is optimizing a data layout for sparse matrix
multiplication. An AoSoA is a generalization of the more commonly known Struct-of-Arrays (SoA) and
Array-of-Structs (AoS) with both being common choices in practice, depending on the type of computation
and the architecture on which the simulation is performed. Both libraries are designed for exascale by using
highly tuned third-party libraries and optimized portability layers (Kokkos) by separating execution and
memory to enable closer mapping to vendor machine road maps and kernel fusing to reduce memory usage.

8.4 AMReX

The goal of this project is to develop a new framework, AMReX, to support the development of block-
structured AMR algorithms for solving systems of partial differential equations on exascale architectures.
Block-structured AMR provides the basis for the temporal and spatial discretization strategy for many
applications relevant to DOE. Seven ECP application projects—in the areas of accelerator design (WarpX,
§ 4.6), astrophysics (ExaStar, § 5.1), combustion (Pele, § 4.2), cosmology (ExaSky, § 5.2), multiphase flow
(MFIX-Exa, § 4.4), wind energy (ExaWind, § 4.1), and additive manufacturing (ExaAM, § 3.5)—are using the
exascale AMR capability under development. AMReX provides a unified infrastructure with the functionality
needed for these and other AMR applications to be able to use exascale architectures effectively.

AMR reduces the computational cost and memory footprint compared with a uniform mesh while preserving
the local descriptions of different physical processes in complex multiphysics algorithms. Fundamental to
block-structured AMR algorithms is a hierarchical representation of the solution at multiple levels of resolution.
At each level of refinement, the solution is defined on the union of data containers at that resolution, each
of which represents the solution over a logically rectangular subregion of the domain. Solution strategies
vary from level-by-level approaches (with or without sub-cycling in time) with multilevel synchronization
to full-hierarchy approaches, and any combination thereof. AMReX provides data containers and iterators
that understand the underlying hierarchical parallelism for field variables on mesh, particle data, and
embedded boundary (cut cell) representations of complex geometries. Both particles and embedded boundary
representations introduce additional irregularity and complexity in the way data are stored and operated on,
requiring special attention in the presence of the dynamically changing hierarchical mesh structure and AMR
time stepping approaches.

The AMReX team is working closely with application partners to ensure that the software meets their
requirements. The team is also working closely with several ST projects to take advantage of new tools that
are being developed. Finally, the team is engaged in a dialogue with hardware vendors to provide them with
information about adaptive mesh algorithms and provide feedback on the impact of hardware design decisions
on AMR applications.

8.4.1 AMReX: Algorithms and Software Objectives

The goal of the AMReX CD center is to develop a computational infrastructure, AMReX, to support
applications that already use or plan to use block-structured AMR at the exascale. For the purposes of this
project, block-structured AMR is considered to have the following defining features.

• The mesh covering the computational domain is decomposed spatially into structured patches (grids)
that each cover a logically rectangular region of the domain.

• Patches with the same mesh spacing are disjoint; the union of such patches is called a level. Only the
coarsest level is required to cover the domain, although finer levels can also cover it.

• The complete mesh hierarchy on which field variables are defined is the union of all the levels. Proper
nesting is enforced, that is, the union of grids at level l > 0 is strictly contained within the union of
grids at level l − 1.

• The physical region covered by each level can be decomposed into different patches to support particle
vs. mesh data.

• The mesh hierarchy can change dynamically throughout a simulation.
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Within this broad framework, the applications supported represent a wide range of multiphysics problems
that couple a variety of different processes and have different computational requirements. Many of these
processes are described by systems of partial differential equations that are discretized on a mesh. Discretization
strategies for these processes often use either explicit discretizations that express updates in terms of the
local state or implicit discretizations that require the solution of linear systems. In some cases, the problem
includes stiff systems of ordinary differential equations that represent single-point processes, such as chemical
kinetics or nucleosynthesis. Many AMReX-based applications also use Lagrangian particles to represent
some aspect of the solution. Particles play a variety of different roles in different applications, ranging
from passively advected quantities used for analysis to playing the dominant role in the overall dynamics.
Several applications have a requirement for complex geometries. For these types of applications, the team is
developing an efficient EB representation in which the solid boundaries are represented as an interface that
cuts through a regular adaptive mesh on which the fluid variables are defined.

At the core of the AMReX software is a flexible set of data structures that can be used to represent
block-structured mesh data in a distributed memory environment. Operations supported on these data
structures include iterators for operations at a level, a communications layer to handle ghost cell exchange
and data distribution, and tools for synchronization between levels. The iterators support logical tiling with
OpenMP on CPU-based architectures, as well as kernel launching and effective memory management on
hybrid CPU/GPU systems.

This basic framework includes native geometric multigrid solvers with support for solving systems arising
from embedded boundary discretizations and interfaces to external solvers, such as those provided by hypre
and PETSc. On top of this core functionality, the team is also developing a rich and flexible set of tools for
treating Lagrangian particles. These tools allow for different representations of particle data (SoA vs. AoS),
particle communications, and support for particle algorithms in an AMR context. For embedded boundary
representations of complex geometry, AMReX provides support for creating and using the relevant geometric
information. Additionally, AMReX provides tools for regridding operations and load balancing, a fast I/O
layer for writing checkpoint/restart and visualization/analysis data, and a rich set of native profiling tools.

The AMReX design allows developers to interact with the software at several different levels of abstraction.
In one approach, the developer uses the AMReX data structures and iterators for single- and multilevel
operations but retains complete control over the time evolution algorithm (i.e., the ordering of algorithmic
components at each level and across levels). In an alternative approach, the developer exploits additional
functionality in AMReX that is designed particularly to support traditional sub-cycling-in-time algorithms.
In this approach, stubs are provided for the necessary operations, such as advancing the solution on a level,
correcting coarse grid fluxes with time- and space-averaged fine grid fluxes, averaging data from fine to coarse,
and interpolating from coarse to fine. One guiding principle for the AMReX design is to maintain flexibility
in discretizations and time-stepping strategies. The core software components are designed to provide
the flexibility to support the exploration, development, and implementation of new algorithms that might
generate additional performance gains. Although many core discretizations, such as standard second-order
and some fourth-order spatial and temporal discretizations, are provided within the AMReX framework for
the convenience of users and developers, AMReX also provides application developers with sufficient access
to the underlying data structures to allow them to implement and optimize new discretizations.

8.4.2 AMReX: Performance Objectives

The applications AMReX supports represent a wide range of multiphysics applications with different perfor-
mance characteristics. Consequently, AMReX must provide a rich set of tools to allow for sufficient flexibility
so that performance can be tuned for different situations. Furthermore, as part of the AMReX design, specific
language requirements are not imposed on users. Specifically, the project supports application modules
written in Fortran, C, C++, or other languages that can be linked to C++.

Hierarchical Parallelism

AMReX is based on a hierarchical parallelism model. At a coarse-grained level, the basic AMReX
paradigm is based on the distribution of one or more patches of data to each node with an owner-computes
rule to allocate tasks between nodes. For many use cases, a node is divided into a small number of MPI
ranks and the coarse-grained distribution is over MPI ranks. For example, on a system with six GPUs per
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node, the node would typically have six MPI ranks. The nodes on modern architectures all have hardware for
parallel execution within the node, but there is considerable variability in the the details of intranode parallel
hardware. For code executing on CPUs, AMReX supports logical tiling for cache reuse by using OpenMP
threading. Tile size can be adjusted at runtime to improve cache performance; tile size can also vary between
operations. AMReX includes both a standard synchronous strategy for scheduling tiles and an asynchronous
scheduling methodology. AMReX also provides extensive support for kernel launching on GPU accelerators
(using C++ lambda functions) and for effective mmory management, that allows users to control where their
data are stored. Although much of the internal AMReX functionality currently uses CUDA/HIP/DPC++ for
maximum performance on current machines, AMReX supports the use of CUDA, HIP, DPC++, OpenMP, or
OpenACC in AMReX-based applications. Specific architecture-dependent aspects of the software for GPUs
are highly localized, enabling AMReX to easily support other GPU architectures.

To meet the diverse requirements of particle applications, both AoS and SoA representations of particle
data are included. Multiple types of particles can coexist in a single application; different types can carry
different numbers of real and integer attributes. Operations on particles are controlled by a particle iterator
that also uses a similar tiling or kernel launching approach. However, particle tiling differs from grid tiling in
that the particle tiling determines the memory layout of the particles, whereas mesh data tiling does not
change the layout.

Linear Solvers

Several applications that use AMR require the solution of one or more linear systems at each time step.
This has three important implications. First, performant linear solvers are necessary for overall performance.
AMReX includes single-level and multilevel native linear solvers for nodal or cell-centered data, as well
as interfaces to external solvers, such as those in hypre and PETSc. Second, regardless of the specific
solution procedure, the efficient solution of elliptic equations at scale requires attention to efficient global
communication. The third implication is that the effectiveness of general task scheduling approaches might
be constrained by the synchronization points/barriers imposed by linear solvers within a time step.

The team refactored the AMReX native linear solvers for improved parallel performance and extended
them to work on hybrid CPU/GPU systems. As part of this development, the team has implemented
agglomeration (i.e., merging boxes in the AMR hierarchy to enable additional coarsening as part of the
multigrid algorithm) and consolidation (i.e., reducing the number of ranks to reduce communication costs at
coarser multigrid levels) strategies from HPGMG as part of the general-purpose solvers.

Communication

AMReX grids can have a complicated layout, which makes the communication metadata needed for ghost
cell exchange and inter-level communication nontrivial to construct. AMReX uses a hash-based algorithm
to perform intersections between Boxes. The hash is constructed in an O(N) operation, where N is the
number of global Boxes, and is cached for later use. It then takes only O(n) operations to construct the list
of source and destination Boxes for communication, where n is the number of local Boxes. Furthermore, the
communication metadata is also cached for reuse.

AMReX supports GPU-aware MPI on GPU machines, if available. To reduce latency, the data that
needed to be communicated through MPI are aggregated into communication buffers. For packing the buffer,
we need to copy data from slices of multidimensional arrays to the 1D buffer, whereas for unpacking the
buffer, data are copied from the 1D buffer to slices of multidimensional array. The straightforward approach
of the copying is to launch a GPU kernel for each slice. Unfortunately, this simple approach is very expensive
because there are often hundreds of very small GPU kernels. In AMReX, we implemented a fusing mechanism
that merges all these small GPU kernels into one kernel, significantly reducing kernel launch overhead.

Performance Characterization

Performance profiling is a crucial part of developing and maintaining a successful scientific code, such as
AMReX and its applications. The AMReX community uses a wide variety of compatible profilers, including
VTune, CrayPat, ARM Forge, Amrvis, and the Nsight suite of tools. AMReX includes its own lightweight
instrumentation-based profiling tool, TinyProfiler. TinyProfiler consists of a few simple macros that insert
scoped timers throughout the application. At the end of a simulation, TinyProfiler reports the total time
spent in each region, the number of times it was called, and the variation across MPI ranks. This tool is on
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by default in many AMReX applications and includes NVTX markers to allow instrumentation when using
Nsight.

I/O: In Situ Analysis and Visualization

AMReX provides a native file format for plotfiles that stores the solution at a given time step for
visualization. Plotfiles use a well-defined format that is supported by a variety of third-party tools for
visualization. AMReX provides functions that directly write plotfiles from mesh and particle objects. Mesh
and particle plotfiles are written independently for improved flexibility and performance. AMReX also
provides users with the option to use HDF5 for data analysis and visualization.

Writing a plotfile requires coordination between MPI ranks to prevent overwhelming the I/O system with
too many simultaneous writes to the file system. AMReX has implemented multiple output methodologies
to provide efficient I/O across a variety of applications and simulations. A static output pattern prints in
a predetermined pattern that eliminates unnecessary overhead, which is useful for well-balanced or small
simulations. A dynamic output pattern improves write efficiency for complex cases by assigning ranks to
coordinate the I/O in a task-like fashion. Finally, asynchronous output assigns the writing to a background
thread, allowing the computation to continue uninterrupted while the write is completed on a stored copy of
the data. The I/O output methodology and other standard features, such as the number of simultaneous
writes, can be chosen through runtime and compile-time flags.

Asynchronous I/O is currently the targeted I/O method for exascale systems because it is a portable
methodology that substantially reduces I/O impact on total runtime. AMReX’s native Async I/O has reduced
write time by a factor of around 80 on full-scale Summit simulations. However, asynchronous I/O requires a
scalable MPI THREAD MULTIPLE implementation to achieve the best results.

8.4.3 AMReX: Co-Design Engagements and Integration Points

ECP Applications

Seven ECP application projects in the areas of accelerator design (WarpX), astrophysics (ExaStar),
combustion (Pele), cosmology (ExaSky), multiphase flow (MFIX-Exa), wind energy (ExaWind), and additive
manufacturing (ExaAM) include codes based on AMReX. All codes use the basic mesh data structures and
iterators along with additional capabilities, which are discussed as follows.

• WarpX is a multilevel electromagnetic PIC code for simulating plasma accelerators; electrons are
modeled as AMReX particles while the electric and magnetic fields are defined on the hierarchical mesh.

• The ExaStar project is developing the CLASH ecosystem, which includes the FLASH and Castro
simulation codes for compressible astrophysical flows and the Sedona code for radiation transport; all
three use AMReX. Particles can be used as tracer particles in Castro and FLASH5 and in an MC
algorithm in Sedona; linear solvers are used to solve for self-gravity. CVODE can be used to evolve
nuclear reaction networks.

• The Nyx N-body plus hydrodynamics code in the ExaSky project is based on AMReX. The particles
represent dark matter, linear solvers are used to solve for self-gravity, and CVODE is called to integrate
the heating/cooling source terms.

• The MFIX-Exa multiphase modeling code is based on AMReX; the particles represent solid particles
within a gas, the EB methodology is used to represent the bounding geometry, and the linear solvers
are used for pressure solves in a projection formulation and for the implicit treatment of viscous terms.

• The compressible combustion code, PeleC, and the low-Mach number combustion modeling code,
PeleLM, are based on AMReX. Both use the EB methodology to represent the problem geometry
and possibly CVODE to evolve the chemical kinetics. PeleLM uses the linear solvers to solve for the
dynamic pressure field in a projection formulation and for the semi-implicit treatment of viscous terms.
Particles can be used as tracer particles and to represent sprays.
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Table 66: AMReX KPP-3 goals and metrics.

Passing value Stretch value Tentative present value

6 14 9

Table 67: AMReX code base.

Package name LOC Target exascale challenge problems Computational motifs

AMReX 325,000 N/A AMR, structured grids, particles,
sparse linear algebra, ODEs

• The ExaWind project combines AMR-Wind, an AMReX-based multilevel structured mesh flow solver,
with Nalu-Wind, an unstructured mesh flow solver. The flow solvers are coupled by using an overset mesh
approach handled by the TIOGA library. Both Nalu-Wind and AMR-Wind solve the incompressible
Navier-Stokes equations with additional physics to model the atmospheric boundary layer. In a wind-
farm simulation, Nalu-Wind is designed to resolve the complicated geometry and flow near the wind
turbine blades, and AMR-Wind solves for the flow in the full domain away from the turbines.

• One of the codes in the ExaAM project, TruchasPBF, uses the multilevel linear solvers in AMReX.
TruchasPBF targets the modeling of part-scale process and melt pool physics.

Additionally, the AMReX CD center regularly communicates with the CoPA CD center regarding best
practices for particle data layout and operations. There has been no direct use of shared code, but discussions
are ongoing.

ECP Software Technologies

The AMReX CD center has interacted with many of the ECP ST projects. The most significant of those
interactions have been with the SUNDIALS, HDF5, and ALPINE projects. SUNDIALS integrators are used
by the Nyx and Pele codes. Additionally, the AMReX CD center has regular interactions with the following.

• The AMReX CD center interacts with the HDF5 project (2.3.4.08). Both the mesh and particle data
in AMReX plotfiles and checkpoint files can now be written in HDF5 format. The Nyx code in the
ExaSky project uses this capability extensively.

• The AMReX CD center interacts with the APLINE project (2.3.4.12) to determine the best ways for
ALPINE and SENSEI to support the AMReX-based application projects. A publication describing
joint work between the ALPINE, MFIX-Exa and AMReX teams on in situ feature analysis, tracking,
and data reduction in MFIX-Exa was published in 2020.

• The AMReX team maintains xSDK compatibility and interoperability. AMReX has been part of the
last two xSDK releases.

ECP Vendor Interaction

The AMReX vendor liaison continues to interact with several vendors, reading PathForward milestones and
participating in PathForward reviews. The liaison regularly provides feedback geared toward improving the
sustained performance that future systems will deliver on AMReX-based and similar applications. Summaries
of the architectural trends and implications have been discussed with ECCN/RSNDA-cleared personnel
within AMReX to ensure that AMReX software development is in line with trends in architecture and system
software. In addition to these high-level interactions, several members of the core AMReX development team
have regular detailed discussions with AMD and Intel engineers about issues related to using AMReX on test
hardware.
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Figure 87: Roofline analysis of memory-bound kernel on Summit.

8.4.4 AMReX: Progress on Early and Pre-Exascale Hardware

Performance on Summit

One main consideration in the design of AMReX is to provide performance portability to applications.
AMReX must support a variety of new architectures that are being developed with different capabilities and
programming models. Our goal is to isolate applications from any particular architecture and programming
model without sacrificing performance. To achieve this goal, we have introduced a lightweight abstraction
layer that effectively hides the details of the architecture from the application. This layer provides constructs
that allow users to specify what operations they want to perform on a block of data without specifying how
those operations are carried out. AMReX then maps those operations onto the hardware at compile time so
that the hardware is used effectively. For example, on a manycore node, a stencil operation would be mapped
onto a tiled execution model by using OpenMP to guarantee good cache performance, whereas on a different
architecture, the same operation might be mapped to a kernel launch appropriate to a particular GPU.

The main looping construct is a ParallelFor that provides the basic looping construct for both structured
mesh and particle data. On Summit, the ParallelFor launches a CUDA kernel on the GPU. Other
performance portability constructs provide support for on-node reductions and memory allocation.

To assess the performance of the ParallelFor, we performed a roofline analysis on some simple kernels.
The first example, shown in Fig. 87, is a simple DAXPY loop, which is memory-bound. The figure shows that
the performance is limited by HBM bandwidth.

The second kernel is a compute-bound kernel that computes the square root of elements of an array by
using a fixed number of Newton iterations. As expected, in this case, the performance is limited by floating
point performance, as shown in Fig. 88.

The final roofline example is the construction of the neighbor list for particles. This is a somewhat more
complex example that includes multiple kernel launches. The roofline analysis, shown in Fig. 89, shows
that these kernels are all memory-bound. The key observation from these different roofline analysis plots is
that the AMReX constructs introduced for portability do not sacrifice performance. On Summit, all these
examples show that the AMReX implementation provides performance near the capability of the architecture.

Another important performance issue for several AMReX applications is the performance of linear solvers.
We tested the performance of the AMReX linear solvers on Summit vs. Cori Haswell. A weak scaling study is
shown in Fig. 90. The solution time on a single node of Summit (using only the six GPUs) is six times faster
than on a single node of Cori Haswell using 32 CPU cores. Weak scaling results are reasonable up to 4096
Summit nodes with scaling that is consistent with the fact that linear solvers are communication intensive,
particularly on GPU architectures. Consolidation and aggregation were also demonstrated to generate an
order of magnitude (or more) savings for large numbers of MPI ranks.

Next, we consider two more comprehensive examples. The first example is electromagnetic PIC. This
example includes the full PIC loop, including ghost cell exchange, deposition across multiple grids, and

Exascale Computing Project (ECP) 178 ECP-U-AD-RPT 2021 00208



Figure 88: Roofline analysis of compute-bound kernel on Summit.

Figure 89: Roofline analysis of particle neighborlist operation.

Figure 90: Weak-scaling study of linear solver. There are 2563 cells per node.
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Figure 91: Weak-scaling study of electromagnetic PIC.

particle redistribution. For this example, we compare the performance of 42 CPUs per node vs. six GPUs
per node, both on Summit. The GPU runs are approximately 30 times faster than the CPU runs with both
showing near-ideal scalability up to 2048 nodes.

As a final example of AMReX performance on Summit, we compare a full three-level AMR simulation of
gas dynamics on GPUs vs. CPUs, again with both cases on Summit. On a single node, the six GPUs are
approximate 20 times faster than the 42 CPU cores. For this example, we see good scaling to almost the full
machine. Regridding in AMReX is a communication-intensive operation. In typical applications, regridding
is a much smaller fraction of the total time.

Finally, all the AMReX-based ECP applications except TruchasPBF essentially run fully on the Summit
GPUs.

8.5 CEED

The efficient exploitation of exascale architectures requires rethinking the numerical algorithms used in large-
scale applications of strategic interest to DOE. These architectures favor algorithms that expose ultrafine-grain
parallelism and maximize the ratio of floating-point operations to energy-intensive data movement. Many
large-scale applications employ unstructured finite element discretization methods in which practical efficiency
is measured by the accuracy achieved per unit of computational time. One of the few viable approaches for
achieving high-performance in this case is to use matrix-free high-order finite element methods since these
methods can increase the accuracy and/or lower the computational time due to reduced data motion. To
achieve this efficiency, high-order methods use mesh elements that are mapped from canonical reference
elements (e.g., hexes, wedges, pyramids, tetrahedra) and exploit, where possible, the tensor-product structure
of the canonical mesh elements and finite element spaces. Through matrix-free partial assembly, the use of
canonical reference elements enables substantial cache efficiency and minimizes extraneous data movement in
comparison with traditional low-order approaches.

The CEED CD center is a focused team effort to develop the next-generation discretization software and
algorithms that enable a wide range of finite element applications to run efficiently on exascale hardware. High-
order methods are the logical choice for this, from a mathematical (higher quality simulations) perspective,
and from HPC (better performance) and risk mitigation perspectives (range of orders provides flexibility
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Figure 92: Weak-scaling study for the three-level AMR simulation of inviscid
compressible flow.

in the uncertain exascale hardware and software environments). Their efficiency extends to problems with
unstructured nonconforming mesh refinement and general curved meshes and includes low-order finite element
discretizations as a special case. The team’s work covers all of these topics, including the full low- to
high-order spectrum of discretizations, allowing software to be easily integrated with low-order applications
while enabling such applications to naturally transition from low- to high-order methods.

The team is pursuing a cross-cutting approach that includes working with hardware vendors, software
developers, and computational scientists to meet the needs of ECP applications. CEED is developing
next-generation finite element discretization libraries to enable unstructured PDE-based applications to take
full advantage of exascale resources without the need to reinvent complicated finite element machinery on
upcoming hardware. The project team is also delivering CEED mini-apps that combine applications-relevant
physics with key high-order kernels that capitalize on matrix-free forms for efficient performance. These
mini-apps are being used to inform and influence hardware development. Finally, CEED is working to further
the development of more general software technologies, including extensions of dense linear algebra libraries to
support fast tensor contractions, performance-portable programming models, and scalable matrix-free linear
solvers. These improvements, specifically motivated by finite element applications on exascale hardware, will
also benefit the broader scientific computing community.

Current information about the project is available on the website, https://ceed.exascaleproject.org,
including recent publications and news items. The software catalog—including MFEM, Nek, the libCEED
low-level API library, the CEED benchmarks, the Laghos, Remhos and Nekbone miniapps, the libParanumal
set of GPU kernels, and the high-order Field and Mesh Specification (FMS), as well as mirrors of the primary
CEED packages—are freely available on GitHub5.

8.5.1 CEED: Algorithms and Software Objectives

The finite element method is a powerful discretization technique that has been applied to virtually every
computational problem involving the solution of differential or integro-differential equations. It has been
exhaustively studied, both theoretically and in practice, in the last several decades. Finite elements use
mappings to the reference element to evaluate integrals that arise in weak variational formulations of PDE
problems. High-order finite elements use higher order polynomials in reference space for approximating

5https://github.com/CEED
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physics fields and potentially the geometry of mesh elements.
Although they live on unstructured grids and result in globally sparse matrices, finite elements have a

dense Cartesian structure locally on each element high-order, thus offering a bridge between the unstruc-
tured/structured and sparse/dense worlds, and they can benefit from tools from all of these fields. Spectral
elements are a special case of the general high-order finite elements when the degrees of freedom and the
quadrature points on the reference element coincide, resulting in a diagonal mass matrix. One can consider
spectral elements and general high-order finite elements as two ends of the same spectrum—both use the
same finite element machinery, but spectral elements emphasize efficiency, whereas general high-order finite
elements emphasize robustness. There is a unique opportunity to combine complementary spectral/finite
element R&D efforts within the CEED team to deliver a next-generation high-order discretization portfolio
to the ECP applications.

The key to efficient high-order methods for the finite element method is to use factored matrix-free
forms with per-grid-point memory demands on par with or lower than standard fully assembled low-order
methods and considerable savings in the number of grid points. Matrix-free high-order finite elements offer
several important advantages for exascale architectures featuring thread-based nodes with multiple memory
hierarchies. First, the order of the methods can be used as a performance-tuning parameter; second, they can
handle small on-node memory with just a few elements per core and compute on-the-fly intermediate quantities;
and third, their kernels are threadable with localized data, making them well-suited to heterogeneous on-node
parallelism, GPUs, and power-efficient computing.

Most of the flops >90 % in matrix-free high-order finite element implementations are in the form of tensor
contractions that effect differentiation or interpolation on the reference element. For an element of order p,
these contractions require only n = Ep3 memory references for the data and O(p2) references for the operators,
whereas the number of flops scales as O(np) = O(Ep4). (Here, n is the total number of grid points, E is the
number of elements, and p is the approximation order.) Further operations that involve physics or geometry
evaluations at the quadrature points require only O(n) work and O(n) memory references. Interprocessor
communication on P processors involves only minimal surface data with complexity O(n/P )2/3. The stencil
is of unit-depth, independent of p.

CEED is focused on developing optimal implementations of finite element operator evaluators and solvers
across a variety of applications. One way that these developments are manifest is through a lightweight
library, libCEED, and related mini-apps and examples. libCEED is designed to allow users to express central
kernels at a low level (e.g., local matrix-vector product) without changing the current discretization. libCEED
is an API between front-end apps and back-end kernels that supports efficient operator description, not a
global matrix. This description is based on a purely algebraic finite element operator decomposition and
thus applies to many applications. The front-end application can use any compatible back end, and any
performant high-order code should be able to plug in at that front end now or in the future. The back
ends can be added independently of front ends and are divorced from finite element information, allowing
computer scientists to optimize the evaluation without domain knowledge. These back ends can be selected
for best performance, optimized for order and device (e.g., CPU, GPU), and can use JIT compilation to
deliver performance. Each new back end is automatically usable in all compatible front-end applications,
giving a broad impact of the optimization efforts.

8.5.2 CEED: Performance Objectives

Petascale finite element codes currently execute with up to 1 million CPU cores by using single-program-
multiple-data programming models on distributed-memory architectures. For sufficiently large problems,
PDE solvers generally have adequate parallelism to make this approach efficient, even at scale. The principal
challenges are having enough work per core to offset communication overhead and linear system solvers that
are scalable in terms of communication costs and bounded iteration counts independent of problem size and
processor count.

The CEED team has significant experience in developing efficient multilevel codes that have bounded
iteration counts at these scales in which even the coarse-grid problem, which has O(1) DOF per core, consists
of millions of DOF. For high-order methods, there are two prevailing strategies for preconditioning: (1)
exploiting spectral equivalences between low- and high-order operators to reduce the problem of solving a
dense but factorizable high-order system to that of solving a sparse low-order system or (2) exploiting the
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tensor-product structure of the high-order elements to develop approximate separable operators that can be
applied locally within a domain-decomposition context. For the Poisson problem, the former approach is
robust and effective if the sparse problem can be solved quickly with algebraic multigrid (AMG), and the latter
is potentially faster unless the elements have high aspect ratios. Either approach requires a communication-
intensive coarse-grid solve that maps distributed data to a coarse distributed solution. Conquering this
coarse-grid communication problem is a significant challenge at exascale, particularly in light of current
device-to-host latencies. Presently, one of two approaches is used for the solution of coarse-grid systems of
size nc. For nc < 105–106, one can project the solution onto a sparse set of vectors X = {x1,x2, . . . ,xnc}
with optimal log2 P communication complexity but suboptimal O(n

5/3
c /P ) work. For larger values of nc,

AMG has proven more effective, despite its O(log2 P ) communication complexity.
The other principal challenge at exascale is to realize high performance per node in which greater on-chip

parallelism makes it imperative to focus on finer-grain parallelism and to exploit significant data reuse.
For accelerator-based nodes in particular, there is a need to usefully elevate the flops-to-bytes ratio, and
high-order methods are very effective in this respect. Fast tensor-product-based high-order finite element
implementations require only O(n) = O(Ep3) memory references and only O(Ep4) operations. The factor
of p increase in operation count arises from tensor contractions—applications of derivative or interpolation
operators on the reference element—which are readily expressed in the form of BLAS3 dgemms.

For CPUs, optimizing the dgemms for small matrices of order p = 6–16 (typically) is the standard starting
point for performance tuning. However, to further push development and identify the fastest implementations
for the commonly occurring high-order kernels, the team has developed a series of benchmarks known as the
bake-off kernels (BKs) and bake-off problems (BPs). CEED’s BK/BPs are designed to test and compare the
performance of high-order implementations. The current specifications (BP1-BP6 and BK1-BK6) describe
simple mass and stiffness matrix solves without preconditioning with specific choices for high-order DOF and
quadrature points. These benchmarks were used to compare Nek (§ 4.3), MFEM, libParanumal, and deal.ii
(external to CEED) and have already resulted in improvements across these codes by learning from each
other. The idea is that the open-source competition benefits all high-order applications and ensures that no
code misses significant optimization opportunities on present and future architectures.

In addition to pushing kernel development, the BPs serve an important role in identifying the strong-scale
limits of various implementations and architectures, which is important when the assessing overall performance
of a given code-problem coupling on a particular platform.

For GPUs, the CEED development is particularly taking advantage of the OCCA and MAGMA efforts in
the project. OCCA provides a portable means of expressing accelerator-directed code to be translated in
CUDA OpenCL, or OpenMP code that performs as well as hand-tuned CUDAṀAGMA is directed toward
fast tensor contractions and batched dgemms that are appropriate for the size of matrices encountered in
high-order finite element codes. Currently, all the mini-apps have GPU versions, and the team is in the
process of bringing these technologies to first-wave applications.

High order alone is insufficient to ensure high performance on either CPUs or GPUs. In the case of CPUs,
this point is illustrated by the significant variance in the bake-off results between Nek5000, MFEM, and
deal.ii. In the case of GPUs, the CEED team demonstrated that it is possible to match roofline performance
models on the NVIDIA P100 and V100s, but only after extensive kernel tuning. For high enough order
and problem sizes, these kernels have been shown to achieve up to 2 TFlops on a V100 GPU on Summit, as
shown in Fig. 93. The tuning steps include mapping intermediate arrays in the tensor contraction steps to
shared memory, padding shared memory for order-8 or order-16 tensors to avoid bank conflicts, unrolling
the inner contraction loops, reducing thread synchronizations by allocating additional shared memory, and
replacing shared memory references with register read/write instructions, where possible. Clearly, even
for something as straightforward as tensor contractions, the realization of fast implementations on GPUs
and other accelerators requires a deeper understanding of the architecture than most application scientists
would desire. One objective of CEED is to make these fast implementations accessible through a convenient
interface, libCEED, which supports tuned backends for each of the forthcoming exascale architectures.

One of the goals of the project is to explore and identify the best algorithms (in terms of time to solution)
for the full range of discretization spaces: from low-order (p = 1) to high-order (e.g., p = 16). For that
purpose, the benchmark problems described below, which represent the key numerical kernels of several PDE
solvers, are used. The computational experiments performed in CEED explore the best implementations for
a given architecture, the components that make them perform well, and software expressions that allow these
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Figure 93: Significant variance in the bake-off results.

implementations to be leveraged on exascale platforms without change to the application-level software.
One example of the performance evaluation and improvement activities is given below, where CEED’s

BP1 benchmark is run on the Cetus BG/Q machine at ANL (BG/Q is picked for repeatability). All of
these runs use 8192 cores in C32 mode and loop over orders p = 1, . . . , 16 with q = p+ 2 quadrature points.
High-order methods clearly show better maximum performance, but more importantly they are also better in
the strong-scaling limit (left on the x-axis) where a user may be running on many nodes at an efficiency no
lower than 50 %. The problem size per node at which that efficiency is achieved is called n1/2 and is a critical
value in performance evaluations.

8.5.3 CEED: Co-design Engagements and Integration Points

CEED is delivering discretization libraries for applications, benchmarks, and standards for the high-order
community and Miniapps for hardware vendors and ST projects interactions. These deliverables involve close
collaboration between four R&D thrusts: Applications, Hardware, Software, and Finite Elements. While each
thrust is focused on a specific ECP goal, their work is highly integrated across team members, institutions
and deliverables.

Application targets

The CEED co-design team is interested first and foremost in applications. The team has a track record of
delivering performant software on leading-edge platforms. The team collectively supports hundreds of users
in national laboratories, industry, and academia, and is committed to pushing simulation capabilities to new
levels across an ever-widening range of applications. In the ECP the team uses a focused one-on-one interaction
with applications facilitated by CEED application liaisons, as well as through one-to-many interactions,
based on the development of easy-to-use discretization libraries for high-order finite element methods. The
first-wave application targets are the ExaSMR (§ 4.3 application from ORNL and the MARBL application
from LLNL (§ 7.2) are already integrated with Nek5000 and MFEM respectively. Additional application
targets are the E3SM (§ 5.5), ExaWind (§ 4.1), ExaAM (§ 3.5), SNLApp, GEOS, WDMApp (§ 4.5), and the
Combustion projects (§ 4.2). In addition to maintaining a close connection with these high-priority ECP
applications, the team is reaching out to lower-priority ECP and non-ECP applications; these interactions
are used to derive requirements for CEED’s mini-apps and software technologies.

Application engagement comes in two primary forms. Initially, CEED build on top of existing application
codes/libraries. The ExaSMR application from ORNL and the MARBL application from LLNL are already
integrated with the CEED base codes Nek5000 and MFEM, respectively. Other ECP applications that may
engage these codes include ExaWind and ExaAM. Exascale advancements for these applications include
all developments directed at Nek5000 and MFEM, including extensions to GPUs and Aurora. Secondly,
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CEED reached out to new applications through libCEED. The goal is to provide PDE-based applications
with a lightweight and portable interface to highly performant kernels on all of the exascale platforms.
Particular candidates include E3SM (climate), SNLApp, GEOS, and WDMApp. In some cases, the general
libCEED model need to be tailored to the application kernels. For example, E3SM uses a mixed FE/finite-
difference formulation. Its local tensor-product structure, however, is ideally suited to the fast tensor-product
factorizations that are at the heart of CEED, such that extensions are very natural. The CEED development
group is also reaching out to these applications to assess the potential of libCEED-enabled performance gains.

Benchmarks: Bake-Off Problems and Bake-Off Kernels

CEED’s BPs are extensions of the BKs mentioned earlier that are instantiations of the high-order
kernels/benchmarks within iterative solvers that are designed to test and compare the performance of high-
order codes under realistic data loading and communication patterns. The current specifications (BP1-BP6
and BK1-BK6) describe simple mass and stiffness matrix solves (without preconditioning) with specific choices
for high-order degrees for freedom and quadrature points. These benchmarks have been used to compare
Nek, MFEM and deal.ii (external to CEED) and have already resulted in improvements from learning from
each other, that can benefit all high-order applications.

Community Standards: High-Order Operator Format and Field and Mesh Specification

One of the challenges with high-order methods is that a global sparse matrix is no longer a good
representation of a high-order linear operator, both with respect to the FLOPs needed for its evaluation, as
well as the memory transfer needed for a matrix-vector multiply (matvec). Thus, high-order methods require
a new “format” that still represents a linear (or more generally nonlinear) operator, but not through a sparse
matrix. One of the goals of libCEED is to propose such a format, as well as supporting implementations
and data structures, that enable efficient operator evaluation on a variety of computational device types
(e.g., CPUs, GPUs). This new operator description is based on the algebraically factored form given by the
finite element decomposition above, which is easy to incorporate in a wide variety of applications, without
significant refactoring of their own discretization infrastructure.

Another challenge for the practical use of high-order methods is the lack of common description of
high-order simulation data (both meshes and fields) which hampers data exchange between applications as
well as high-order visualization. CEED’s Field and Mesh Specification (FMS) is a newly proposed high-order
interface, that allows a wide variety of applications and visualization tools to represent unstructured high-order
meshes with general high-order finite element fields defined on them. FMS is intended as a lightweight format
and API that can represent general finite elements within a common, easy to use framework. This includes
high-order solutions and meshes as well as non-standard finite elements, such as Nedelec and Raviart-Thomas
elements.

Miniapps: Nekbone, Laghos, Remhos, libParanumal

Nekbone is a lightweight subset of Nek5000 that solves a standard Poisson equation; weak-scaled to 6
million MPI ranks; currently supports OpenACC / CUDA-based GPU variants. Laghos is a CEED-developed
miniapp that for the first time provides a proxy for high-order discretizations of the Euler equations of
compressible gas dynamics, as solved by the BLAST code at LLNL (the ALE component of ECP’s MARBL
application). Laghos features moving (high-order) curved meshes, (high-order) explicit time integration,
AMR version, and OCCA and RAJA versions targeting GPUs. Both Nekbone and Laghos are procurement
benchmarks for CORAL2 and ECP 1.0 proxy apps. Remhos is a new CEED mini-app that complements
Laghos. It reflects the Lagrangian remap phase that is used in the BLAST code. libParanumal (formerly
Holmes) is a CEED-developed experimental test bed for multilevel parallel implementations of high-order
finite element computations; under development.

Collaboration with Hardware Vendors and Software Technology Projects

The CEED team is working closely with several of the ECP vendors, most notably: Intel, CRAY, AMD,
IBM and ARM on hardware optimizations, miniapp evaluation, the Aurora architecture, GPU performance
and more. The team built a two-way (pull-and-push) collaboration with the vendors, where the team develops
hardware-aware technologies (pull) to understand performance bottlenecks and take advantage of inevitable
hardware trends, and vendor interactions to seek (push) impact and improve hardware designs within the
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Table 68: CEED KPP-3 goals and metrics.

Passing value Stretch value Tentative present value

6 12 6

Table 69: CEED code base.

Package name LOC Target exascale
challenge problems

Computational motifs

MFEM 260k C++ MARBL, ExaAM,
GEOS, SNLApp

High-order finite elements,
unstructured AMR, computation,
matrix-free computation, scalable
solvers

NekRS 74k
C/C++/Fortran

ExaSMR, ExaWind,
E3SM

High-order methods, matrix-free
computation, scalable solvers

Nek5000 200k Fortran/C ExaSMR, ExaWind,
E3SM

High-order methods, matrix-free
computation, scalable solvers

libCEED 67k C CEED, SNLApp, E3SM,
GEOS

Low-level API library for efficient
high-order operator evaluation

libParanumal 53k C++/OKL CEED Prototype GPU accelerated algorithms
for high-order finite element methods

OCCA 69k C++ CEED Portable many-core programming
platform

MAGMA 346k C/C++ CEED Numerical linear algebra batched
linear algebra, tensor contractions,
dense and sparse matrix computations

PUMI 93k C++ CEED Parallel, unstructured, mesh
infrastructure

ECP scope. CEED is also collaborating with a number of projects in ECP’s software technologies focus
area, including MPICH, STRUMPACK, PETSc, Spack, SUNDIALS, ALPINE/VTK-m, KokkosKernels and
ZFP. In addition, CEED packages are also part of the FASTMath institute in SciDAC, the xSDK and the
OpenHPC distribution.

8.5.4 CEED: Progress on Early and Pre-Exascale Hardware

Performance on Summit

All of the CEED software components have been ported to NVIDIA GPUs and have run on Summit,
Lassen or similar V100 machines. Two examples of this work are the NekRS collaborations with ExaSMR
and the MFEM collaborations with MARBL. While not reported here, the CEED team has also collaborated
with ExaWind and ExaAM in their Summit runs.

NekRS Applications—ExaSMR and ExaWind

NekRS is a new GPU-oriented version of Nek5000 written in OCCA, which is a C-based concurrent
compute abstraction that provides portability across a variety of backends, including CUDA, HIP, OpenMP,
and OpenCL. The principal kernels in NekRS come from the high-order finite-element library, libParanumal,
out of Virginia Tech. These kernels typically realize >90 % of the bandwidth-limited peak and sustain
1–2 TFlops/s (FP64) on a single V100, depending on the kernel and polynomial order. Extensive testing has
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Table 70: ExaSMR: NekRS strong and weak scaling performed on Summit,
using 6 GPUs per node, for simulating turbulent flow in the 17× 17 rod-bundle,
with ReD = 5000. Time per step in seconds (tstep), velocity iteration count (vi),
and pressure iteration count (pi), are all averaged over 100 steps. R is the ratio
of tstep of 1810 nodes to that of others for strong scaling and tstep of 87 nodes
to that of others for weak scaling, provided with the ideal ratio, Rideal and the
parallel efficiency, Peff .

ExaSMR application performance: 17× 17 fuel rods simulation

case node gpu E N E/gpu n/gpu vi pi tstep(s) R Rideal Peff (%)
1810 10 860 175 618 000 7 16 171 5.5M 4 2 1.855e-01 1.00 1.00 100

strong 2536 15 216 175 618 000 7 11 542 3.9M 4 2 1.517e-01 1.22 1.40 87
3620 21 720 175 618 000 7 8085 2.7M 4 2 1.120e-01 1.65 2.00 82
4180 25 080 175 618 000 7 7002 2.4M 4 2 1.128e-01 1.64 2.30 71
4608 27 648 175 618 000 7 6351 2.1M 4 2 1.038e-01 1.78 2.54 70

case node gpu E N E/gpu n/gpu vi pi tstep(s) R Rideal Peff (%)
87 522 3 324 000 7 6367 2.1M 4 2 8.57e-02 1.00 1.00 100
320 1920 12 188 000 7 6347 2.1M 4 2 8.67e-02 0.98 1.00 98

weak 800 4800 30 470 000 7 6347 2.1M 4 2 9.11e-02 0.94 1.00 94
1600 9600 60 940 000 7 6347 2.1M 4 2 9.33e-02 0.91 1.00 91
3200 19 200 121 880 000 7 6347 2.1M 4 2 9.71e-02 0.88 1.00 88
4608 27 648 175 618 000 7 6351 2.1M 4 2 1.03e-01 0.83 1.00 83

established that the strong-scale limit for NekRS (where performance is 80 % of its saturated peak) is ∼2.5M
points per GPU, for both the NVIDIA V100 and A100. Using more GPUs (and thus fewer points per GPU)
beyond this point does not yield significant speedup. A strong-scaling study, see Table 70, for a 60 billion
grid point 17× 17 rod-bundle configuration for ExaSMR realizes 70 % parallel efficiency on all of Summit
(27,648 NVIDIA V100s, 2.1 million points per GPU), and 92 % efficiency on 21,720 V100s (2.7 million points
per GPU). A weak-scaling study for the same configuration, using 2.1 million points per GPU, shows only
a 20 % increase in time-per-step as the number of nodes is increased from P = 87 to 4608 (full-core). The
factor of 42 increase in compute power for a 50 fold increase in number of GPUs is remarkably good, given
that the chosen problem size per V100 is relatively small and thus influenced by communication overhead.
Finally, for a fixed-size problem at the strong-scale limit, NekRS on Summit outperforms Nek5000 on Mira
by about a factor of three, which is notable because the strong-scale limit on Mira is ∼4000 points per core,
a factor of 600 smaller than the limit on the V100s. The 3× gain on Summit comes from a combination of
kernel performance, communication hiding, and algorithmic improvements.

MFEM Applications—MARBL and ExaAM

MARBL is a next-gen multiphysics simulation code being developed at LLNL. The code provides
multi-material radiation-magneto-hydrodynamics with applications in ICF, pulsed power and equation of
state/material strength experiments as part of the NNSA ATDM program. One of the central features of
MARBL is an ALE formulation based on the MFEM-enabled BLAST package, which solves conservation
laws of mass, momentum, and energy in a moving material frame. The BLAST package utilizes high-order
finite element discretizations of physical processes on a high-order (curved) moving mesh. The GPU port of
BLAST makes extensive use of on the partial assembly (PA) technology from CEED and GPU support via
MFEM. Below we provide specifics about the major GPU kernels in BLAST, and the impact of the CEED
project in these GPU development efforts.

Memory management: Since MARBL/BLAST is based on MFEM, it directly uses the high-level memory
management interface for reading and writing device data. In addition, the BLAST team has enhanced the
MFEM’s memory manager capabilities by introducing the Umpire memory manager providing access to
memory pools. This approach enables the following benefits: substantially reduces slowdowns caused by
cudaMalloc performance; sharing of device memory buffers inside BLAST to reduce the total device usage;
and sharing overall temporary memory between other external packages in MARBL that use Umpire.
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Lagrangian phase: In this phase, the multi-material compressible Euler equations are solved on a moving
curved mesh. The algorithm contains four major components, namely, inversion of a global CG mass
matrix, computation of physics and material specific quadrature point data, computation of artificial viscosity
coefficients, and application of a force operator.

The optimization of the mass and force operators has been aided by the matrix-free methods that were
introduced by the CEED-developed Laghos miniapp, which models the main computational kernels of
Lagrangian hydrodynamics, without the additional complication of physics-specific code. The GPU kernels for
these methods were implemented by the BLAST team and reside in the BLAST code. The latest Laghos GPU
implementations of these kernels give an alternative that might be used in the future, based on performance
tests. A key CEED benefit provided to MARBL is the ability to drop in replacements for these expensive
kernels as they become available.

Remesh phase: The mesh optimization phase of BLAST has several user selectable options; but the method
of choice is based on the Target-Matrix Optimization Paradigm (TMOP), where the mesh optimization
problem is posed as a variational minimization of a nonlinear functional. The development of the GPU port
was performed in MFEM’s mesh optimization miniapp, and then directly ported to BLAST, as both codes
use the same core TMOP algorithms.

Remap phase: The remap algorithm in BLAST has two main components, namely, velocity remap, which
is solved by a continuous Galerkin (CG) advection discretization, and remap of other fields, which is modeled
by flux-limited discontinuous Galerkin (DG) advection.

The DG method is nonlinear, involving three separate components, namely, a high-order (HO) method, a
low-order (LO) method, and a nonlinear flux-corrected transport (FCT) procedure. Currently, all of these
three components require sparse matrices. Using the MFEM infrastructure, the MARBL developers have
developed custom GPU code to populate the sparsity of the advection sparse matrix, thus achieving LO and
HO implementations on the GPU. It is expected that this approach will be improved significantly by the
future work in the CEED-developed Remhos mini-app, as it contains matrix-free methods to obtain LO and
HO solutions.

The CG advection solve is also fully GPU ported, which includes the computation of quadrature data
and application of the CG mass and advection matrices. Similarly to the CG mass matrix inversion in the
Lagrangian phase, the remap GPU code is implemented inside MARBL, and the alternative to switching to
the optimized MFEM kernels will be explored.

Next Steps

We will continue to explore platform- and node-dependent tuning. For example, significant performance
gains in NekRS and libParanumal derive from covering communication with useful work. On Summit,
reduced precision in the preconditioners is beneficial because it reduces pressure on injection bandwidth. On
other platforms where more NICs are available, the precision reduction has minimal impact. Ultimately,
implementations will need to be flexible and runtime configurable to maximize performance for large-scale
applications. The CEED library development will continue to provide expanded support for such optimizations
as dictated by forthcoming architectures and use-models.

8.6 ExaGraph

Combinatorial algorithms in general and graph algorithms in particular play a critical enabling role in
numerous scientific applications. The irregular memory access nature of these algorithms makes them one of
the hardest algorithmic kernels to implement on parallel systems. The team therefore proposes to develop
methods and techniques for efficient implementation of key combinatorial (graph) algorithms chosen from a
set of exascale applications.

There are three dimensions to the work: (i) exascale applications that drive the selection of combinatorial
kernels and integration of software tools developed, such as computational biology, computational chemistry,
and climate science; (ii) combinatorial (graph) kernels that play a crucial enabling role in the chosen application
areas, such as graph traversals, graph matching, graph coloring, and graph clustering; and (iii) software
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framework for efficient implementation on hierarchical distributed-memory architectures representative of
potential exascale platforms, such as Zoltan2, KokkosKernels, CombBLAS, Vite and Ripples.

8.6.1 ExaGraph: Algorithms and Software Objectives

Through engagements with AD projects, work in the first year had focused on algorithmic development
and scaling of several key graph algorithms. The algorithms were selected from the needs of the following
ECP applications: ExaBiome (§ 6.3), NWChemEx (§ 3.2), ATDM, ExaWind (§ 4.1), ExaSGD (§ 6.1) and
SuperLU/STRUMPACK. Key contributions from fiscal year 2020 were in the development of scalable protein
similarity network construction, GPU-enabled graph partitioning, distributed multi-GPU implementation of
graph clustering and influence maximization algorithms. To increase further engagement with the broader
science community, the ExaGraph team collaborated with non-ECP Application Projects and included
novel applications in computational biology and algebraic multigrid solvers, with goals to enhance these
collaborations further in fiscal year 2021.

As demonstrated in the discussion below, significant strides were made in porting and scaling the algorithms
on Summit for several graph problems. While we aim to continue optimization of the tools on Summit, we
aim to focus on the porting of tools to exascale test beds in fiscal year 2021 along with integration with
exascale applications.

8.6.2 ExaGraph: Performance Objectives

• Single-node performance: Develop efficient implementations for optimal performance on a single-node
of future exascale architectures and target shared-memory parallelism using OpenMP and single GPU
performance using CUDA and other technologies.

• Distributed performance: Design and develop distributed-memory implementations using MPI and
OpenMP for the graph algorithms selected in this project.

• Multi-GPU implementation: Develop distributed multi-GPU implementations for graph clustering,
graph partitioning and influence maximization algorithms.

8.6.3 ExaGraph: Co-design Engagements and Integration Points

• ExaBiome: Through a close working relationship with ExaBiome (§ 6.3), the ExaGraph team has
developed new sparse matrix-matrix multiplication (SpGEMM) codes as well as a new distributed con-
nected component algorithm (LACC) that together accelerate HipMCL (ExaBiome’s protein clustering
application). We also developed a distributed algorithm for generating protein similarity graphs [65],
which is the input for HipMCL. This algorithm is packaged as part of the PASTIS software6. With
ExaBiome, we have a joint milestone on end-to-end GPU acceleration of this protein clustering pipeline.

• ATDM/SNL. We have worked with the Empire team to analyze their load balance needs. We have
implemented a graph partitioning model for the mesh. Preliminary results show a slight performance
improvement using our graph partitioning instead of their previous geometric approach.

• ATDM/SNL math libraries: The MueLu algebraic multigrid (AMG) solver is used in several ECP
applications, such as ExaWind and ATDM (Sparc, Empire). The team is working with the MueLu
team to parallelize the AMG setup phase. Graph coloring can be used to find independent sets for
coarsening; parallel shared-memory coloring has been developed in KokkosKernels for this purpose.

• ExaWind: The team is working with the ExaWind (§ 4.1) team at Sandia to design a parallel scheme
for finite element assembly for unstructured (mixed) meshes. The current approach uses atomics and
locks, but an alternative is graph coloring. ExaGraph is advising the application team on how to use
Zoltan2 and KokkosKernels coloring, and to identify new application needs.

6https://github.com/PASSIONLab/PASTIS
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Table 71: ExaGraph KPP-3 goals and metrics.

Passing value Stretch value Tentative present value

2 8 4

Table 72: ExaGraph code base.

Package name LOC Target exascale challenge problems Computational motifs

CombBLAS 50,000
Protein clustering, Graphs implemented
factorization-based sparse solvers in sparse matrix algebra

Vite 12,534
Model reduction in power grid simulations,

Graph clustering
computational biology

Matchbox 7081
Task assignment, algebraic multigrids,

Graph matching
sparse direct solvers

Zoltan2/Sphynx 2000 Mesh and matrix partitioning, load balancing Graph partitioning

PASTIS 13,000 Protein similarity construction Sparse GEMM

KokkosKernels FEM assembly, AMG setup Graph coloring

Ripples 15,927 Computational biology and epidemic intervention Influence maximization

• SuperLU/STRUMPACK: In addition to existing accomplishments on developing a heavy-weight perfect
matching (HWPM) algorithm in collaboration [66], ExaGraph is working with the factorization-based
sparse solvers team on two new fronts—a nested-dissection based sparse matrix ordering capability and
a parallel symbolic sparse matrix factorization algorithm using GraphBLAS primitives that can run on
GPUs.

• NWChemEx: The team is working with the NWChemEx team on a developing a novel load balancing
algorithm based on submodular matching. The goal is to impact the Fock matrix construction step in
NWChemx.

• Software Technologies: ExaGraph worked with the Pagoda team on developing a PGAS based im-
plementation of half-approximate matching using UPC++ and demonstrated better performance and
programmer productivity. ExaGraph also worked with the Metall team to integrate persistent memory
tools in miniVite proxy application. The team has also started initial discussions with the Super-
LU/STRUMPACK (Factorization-based preconditioners) ECP-ST project regarding parallel sparse
matrix ordering techniques necessary for several applications. As an independent thrust, the team
is also working with the same project to improve the symbolic factorization step using GraphBLAS
primitives and accelerators.

• Benchmarking/Vendors: ExaGraph is working with vendors to port and optimize the proxy application
on graph clustering targeting accelerator (GPU) platforms and memory systems.

8.6.4 ExaGraph: Progress on Early and Pre-Exascale Hardware

Performance on Summit

Multiple efforts were initiated by the ExaGraph team to design and develop efficient multi-GPU algorithms
targeting Summit. Significant speedups were observed for many of a majority of the efforts. We summarize
the progress on Summit in the following narrative.

• Protein Network Construction: Given a large collection of proteins, the objective is to identify
groups of similar proteins by constructing a similarity network over protein sequences and the clustering
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Figure 94: Strong scaling of GPU-accelerated PASTIS on Summit, running on
the 10 million subset of metaclust50 dataset.

this network to discover possible protein families. We developed PASTIS (Protein Alignment via
Sparse Matrices), a fully distributed protein similarity construction library using CombBLAS sparse
matrix support. The current design will enable the replacement of sparse linear algebra kernels using
vendor-optimized libraries such as cuSPARSE, ROCm and MKL. The preliminary scalability and
performance of GPU-enabled PASTIS is shown in Figure 94.

• Graph Partitioning: Graph partitioning is a successful approach to load balancing that is essential
to numerous scientific computing tasks. Given the absence of GPU-enabled tools for graph partitioning,
ExaGraph developed Sphynx [67] as a distributed-memory accelerator-enabled, and portable tool.
Sphynx uses a spectral partitioning method (Fig. 96). It builds on linear-algebra kernels towards
this end and consequently benefits from the well-established and portable libraries such as Trilinos.
We demonstrated good scalability on up to 96 GPUs as well as competitive performance relative to
ParMetis, a popular graph partitioning tool (which only runs on CPU). We observed up to 970×
speedup for Sphynx on GPU versus ParMetis on CPU on irregular graphs.

• Influence Maximization: The objective of the Influence Maximization problem is to identify the
k-most influential vertices in a graph for a given diffusion model. Since the problem is a submodular
optimization problem, efficient greedy algorithms are available that guarantees approximate solutions.
ExaGraph team has developed shared-memory, distributed-memory and multi-GPU implementations
for influence maximization using state-of-the-art algorithms. We have demonstrated speedups of up to
790× over a state-of-the-art serial implementation for a distributed multi-GPU library, cuRipples, on
Summit [68]. An illustration is provided in Fig. 95. We applied the algorithm to design intervention
strategies to minimize spread in epidemic outbreaks [69].
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Figure 2: Scaling on Summit with the IC Model. Parameters: � = 0.13, k = 100.

Table 1: Input Graphs

Graph Nodes Edges Avg. Degree Max Degree

cit-HepTh 27,770 352,807 12.70 2,468
web-Google 875,713 5,105,039 11.66 6,353
web-BerkStan 685,230 7,600,595 22.18 84,290
wiki-topcats 1,791,489 28,511,807 31.83 3,907
soc-Pokec 1,632,803 30,622,564 37.51 20,518
soc-LiveJournal1 4,847,571 68,993,773 28.47 22,889
com-Orkut 3,072,441 117,185,083 76.28 33,313

7 EXPERIMENTAL RESULTS
7.1 Comparative Evaluation
We �rst compare CuRipples against state-of-the-art serial and par-
allel implementations. More speci�cally, the implementations we
use are as follows:

• IMMseq: the original IMM algorithm by Tang et al. [30];
• IMMopt: hand-tuned and optimized CPU implementation

[25] of IMMseq;
• IMMmt: OpenMP multithreaded implementation of IMM

[25]; and
• IMMedison: distributed implementation using MPI/OpenMP

and running on the NERSC Edison supercomputer [25];

We used two con�gurations of parameters: (� = 0.5, k = 100)
and (� = 0.13, k = 200). Note that the latter con�guration was
beyond the memory limit of single node implementations (IMMseq,
IMMopt, and IMMmt).

Table 2 summarizes the results of our comparative evaluation,
for the two largest inputs. Our evaluation shows that CuRipples
achieves speedups of 790⇥ and 251⇥, respectively on com-Orkut
and soc-LiveJournal1, compared to IMMseq. Against the state-of-
the-art single node parallel implementation (IMMmt), CuRipples
delivers up to 37.19⇥ on com-Orkut and up to 15.72⇥ on soc-
LiveJournal1.

As for the distributed implementations, we observe from Table 2
that CuRipples, when run on 2.6K CPU cores + 384 GPUs, generates
a time-to-solution which is roughly comparable to the time-to-
solution achieved by IMMedison on 48K CPU cores. In fact, when
run on a similar con�guration of 64 nodes, CuRipples is able to
achieve speedups of 8.31⇥ and 1.79⇥ over IMMedison (for the two
inputs respectively).

Collectively, these comparative results show that our new hybrid
CPU+GPU parallel implementation, CuRipples, is able to achieve
one to two orders of magnitude performance improvement over
state-of-the-art single node implementations, while also able to

Figure 95: Scaling on Summit with the IC Model. Parameters: ε = 0.13,
k = 100.
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• Graph Clustering: Given a graph, graph clustering partitions the vertex set into clusters that are
densely connected within a cluster, but sparsely so to the rest of the graph. While it is similar to the
graph partitioning problem in concept, it is a relatively simpler optimization problem, and efficient
heuristics exist. Using the concept of modularity optimization through the Louvain algorithm as the
serial template, the ExaGraph team has developed shared-memory, distributed-memory and multi-GPU
implementations for graph clustering. We demonstrate speedup of up to 19× relative to state-of-the-art
single-GPU implementation from NVIDIA (cuGraph).

8.7 ExaLearn

The ExaLearn co-design center was funded as of FY18/Q4, and is designed to leverage the revolution in what
is variously termed machine learning, statistical learning, computational learning, and artificial intelligence
(henceforth referred to as ML). New ML technologies can have profound implications for computational and
experimental science and engineering and thus for the exascale computing systems that DOE is developing to
support those disciplines. Not only do these learning technologies open up exciting opportunities for scientific
discovery on exascale systems, they also appear poised to have important implications for the design and use
of the same exascale computers themselves: HPC for ML and ML for HPC.

ExaLearn has provided exascale machine learning software for use by the ECP Applications projects, other
ECP co-design centers and DOE experimental facilities and leadership class computing facilities. Working
closely with ECP applications, ExaLearn has undertaken a focused co-design process that targets learning
methods common across these applications. This includes deep neural networks of various types (RNNs,
CNNs, GANs,VAEs, etc.), kernel and tensor methods, decision trees, ensemble methods, graphical models and
reinforcement learning methods. ExaLearn has engaged directly with developers of the ECP hardware, system
software, programming models, learning algorithms, and applications to understand and guide tradeoffs in
the development of exascale systems, applications, and software frameworks,

ExaLearn has identified the fundamental ML challenges associated with ECP and concentrated efforts on
the development of scalable ML technologies for the analysis of data generated by exascale applications and
DOE user facilities as well as to guide the optimal selection and steering of (1) complex computer simulations
(e.g., current exascale application projects), and (2) experiments (e.g., at DOE facilities including light sources
and accelerators). Key to success in this endeavor has been a deliberate focus on verification and validation
and uncertainty quantification with a solid determination of generalization errors. A unifying principle is
that of using exascale ML to improve the efficiency and effectiveness both of DOE computing resources and
experimental facilities.

The technical goals for ExaLearn are fourfold: (1) reduce the development risk of ML software for the ECP
application teams by investigating crucial performance tradeoffs related to implementation and application
of learning methods in science and engineering, (2) produce high-performance implementations of learning
methods, (3) enable easy and efficient integration of those methods with applications, and (4) contribute to
the co-design of effective exascale applications, software, and hardware.

The team envisions ExaLearn as the intersection of applications, learning methods, and exascale platforms,
advancing understanding of the constraints, mappings, and configuration choices that determine their
interactions. The success of ExaLearn will ultimately be evaluated with respect to four metrics: (1) use of
ExaLearn tools and technologies by the ECP applications and DOE experimental facilities; (2) efficiency of
learning methods on exascale computers; (3) improvements in scientific deliverables of applications; and (4)
support of ExaLearn tools and technologies by hardware vendors.

8.7.1 ExaLearn: Algorithms and Software Objectives

The ExaLearn project is delivering state of the art machine learning and deep learning techniques available
from the open-source community, as well as optimizing ones specific to the needs of the application pillars.
To date, the team has leveraged industry standard frameworks, such as Tensorflow, PyTorch, LBANN, and
artificial intelligence (AI) gym, and extended LBANN to support distributed 3D convolutions for the ExaSky
(§ 5.2) application.

ExaLearn is leveraging an engagement with the CANDLE project to adapt the CANDLE workflow to a
broader range of projects. Specifically, ExaLearn is using both the supervisor framework for hyper-parameter
optimization and the general CANDLE model description framework for model portability. ExaLearn will
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Table 73: ExaLearn KPP-3 goals and metrics.

Project Passing value Stretch value Tentative present value

ExaSky 2 3 1
CANDLE 1 2 0
ExaAM 0 0 0
NWChemEx 0 0 0
E3SM 0 0 0
Pele-Combustion 0 0 0

Total 3 5 1

continue to deliver a series of software releases that combine multiple open-source packages that span the
ML/DL (deep learning) spectrum to address the needs of the application pillars. These software releases will
capture a coherent set of tools used to deliver scientific output for each milestone, including ExaLearn-specific
optimizations that address particular scalability impediments. Upcoming ExaLearn releases will include:
LBANN—a scalable deep learning toolkit for the ExaSky project; PyTorch—rapid prototyping of neural
network models for Control, Design, and Inverse; Ai-Gym—reinforcement learning for control.

8.7.2 ExaLearn: Performance Objectives

The performance objectives of the ExaLearn project are to apply state of the machine learning and deep
learning techniques and tools to problems of interest across the DOE. The performance objectives have
been tailored to each application within the four application pillars: surrogates, control, inverse, and design.
Within each of these applications areas the goal has been to enable new applications to take advantage of
leadership class computing and eventually exascale computing to advance the state of art within the discipline.
Broadly the goals for each engagement are to accelerate the development of new ML/DL models, targeting
the productivity of the domain scientist. As such, the most consistent metric across applications will be
the number of models that can be trained per unit of time, enabling broader and more rapid use of model
exploration. For example, in the surrogate application pillar, the team has accelerated the training of the
cosmoflow application using the LBANN framework to drive down the per-network training time, while
increasing the data input size on which it is trained.

8.7.3 ExaLearn: Co-design Engagements and Integration Points

Initial engagements with AD are primarily with two projects: ExaSky (§ 5.2) and CANDLE (§ 6.2). Surrogate
model development for cosmology is the focus with ExaSky. Application targets in this current year include:
E3SM (§ 5.5), Pele-Combustion (§ 4.2), NWChemEx (§ 3.2), and ExaAM (§ 3.5). Additional work will be
targeting RL methods for tokamak control.

8.7.4 ExaLearn: Progress on Early and Pre-Exascale Hardware

Performance on Summit (or Summit equivalent)

ExaLearn has demonstrated the ability to scale the training of deep neural networks on leadership class
systems for three key applications: a molecular generator model for developing small molecule therapeutics
for COVID-19, the CosmoFlow regression model from ExaSky, and a 3-D U-Net architecture that will have
direct use for additional ExaSky applications. All of the work detailed here has been written up in the
ExaLearn Software Toolkit v2.0 report and the companion Applications and COVID reports. Additionally,
this work is highlighted in a pair of peer-reviewed publications.

As part of the ExaLearn pivot to COVID-19 driven research, we scaled the training of a character-
based Wasserstein AutoEncoder (cWAE) to all of the Sierra supercomputer at LLNL. Using the LBANN
scalable deep learning toolkit and investments from ExaLearn we were able to achieve a peak performance
of 318 PFlops/s in mixed precision FP16-FP32 (accumulate), which corresponded to 17.1 % of the system
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Figure 97: Strong scaling performance with eight and 16 GPUs per trainer and
a mini-batch size of 4096. Data points are labeled with the number of epochs
required to achieve an accuracy of 0.025 or lower.

peak. Additionally, we were able strong scale the training time and produce a trained model on 1.613 billion
compounds in just 23 minutes, using 16,640 GPUs versus 55 minutes on 256 GPUs, a 2.39× speedup in time
to solution. Furthermore, this represent a massive breakthrough when compared to the prior state of the art
that required more than 24 hours to train a Junction-Tree Variational AutoEncoder model on only 1 million
chemical compounds. This work was highlighted as a finalist for the ACM Gordon Bell Special Prize for High
Performance Computing-Based COVID-19 Research.

To achieve these results we optimized multiple aspects of scalable training, primarily focusing on: single
GPU performance, per-trainer GPU mini-batch size, number of GPUs per trainer, and the total number
of trainers. These optimizations focused on reducing the impact of GPU kernel launch times, tuning the
number of samples per GPU based on the limitations of the GPU device memory, and using mixed-precision
training to avoid learning instabilities that appeared with native FP16 training. Overall, the collection of
optimizations enabled us to accelerate the time to insight when working with complex generative models
and massive data sets, and use Scalable HPC DL training to make neural network architecture design and
debugging possible at human time scales. Figure 97 shows the reduction in training time to a fixed model
accuracy as the number of compute resources is increased.

Additional work on creating the capability to train neural networks at scale and on data sample sizes that
is previously unobtainable is showcased using the CosmoFlow model and a 3-D U-Net model. For both of
these architectures we have developed techniques for spatial partitioning of the convolutional filters within
the model, allowing us to strong scale the training using multiple GPUs per sample. Not only has this led to
performance results such as a 147.3× speedup using 2048 GPUs versus 8 GPUs for the CosmoFlow model on
the Sierra system, but also a 2× improvement in the quality of model as measured by the mean squared
error by allowing the model to learn on entire 5123 data samples rather than subsets of the data as shown
in Figure 98. This work was also applied to a 3-D U-Net model that is able to perform reconstruction and
segmentation tasks and is the next step for the engagement with ExaSky. For the 3-D U-Net, our work was
able to achieve a 28.4× speedup using 1024 GPUs versus 32 GPUx for a model with a sample size of 2563.
This work also required the development of a scalable data ingestion pipeline and distributed in-memory
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Figure 98: Strong scaling performance of the CosmoFlow network with 256
GPUs on Sierra with different data cube sizes.

data store that matched the spatial partitioning of the neural network architecture. Without these advances
the model training is completely I/O bound, and with them, it is completely compute bound.

Similar work was also performed on a smaller version of the CosmoFlow model, that lacked spatial
partitioning and worked only with smaller, down-sampled, data samples. This version reflected the newly
adopted version of CosmoFlow that is now in the MLPerf-HPC benchmark suite. ExaLearn tuned the data
ingestion of this version of the model to use a shared data ingestion on Summit to completely hide the data
ingestion.
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and M. Bussmann. “openPMD: A meta data standard for particle and mesh based data.” (Nov. 2015),
[Online]. Available: https://github.com/openPMD (visited on 2020).

[29] T. Sukhbold, S. E. Woosley, and A. Heger, “A high-resolution study of presupernova core structure,”
The Astrophysical Journal, vol. 860, no. 2, p. 93, Jun. 2018, issn: 1538-4357. doi: 10.3847/1538-
4357/aac2da. [Online]. Available: http://dx.doi.org/10.3847/1538-4357/aac2da.

[30] A. Menon and A. Heger, “the quest for blue supergiants: Binary merger models for the evolution of
the progenitor of sn 1987a,” Monthly Notices of the Royal Astronomical Society, issn: 1365-2966. doi:
10.1093/mnras/stx818.

Exascale Computing Project (ECP) 198 ECP-U-AD-RPT 2021 00208

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/
https://doi.org/10.11578/dc.20190809.2
https://github.com/LLNL/ExaCMech
https://doi.org/10.11578/dc.20191024.2
https://doi.org/10.11578/dc.20191024.2
https://github.com/LLNL/ExaConstit
https://doi.org/10.11578/dc.20171025.1248
http://mfem.org/
http://www.osti.gov/servlets/purl/1169830/
https://doi.org/10.1002/nme.1620050108
https://doi.org/10.1002/nme.1620190910
https://doi.org/10.1016/j.camwa.2020.06.009
http://dx.doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1021/acs.jpclett.8b03015
https://doi.org/10.1021/acs.jpclett.8b03015
https://doi.org/10.1021/acs.jpclett.8b03015
https://doi.org/10.1021/acs.jpclett.8b03015
https://doi.org/10.1103/PhysRevMaterials.1.073603
https://link.aps.org/doi/10.1103/PhysRevMaterials.1.073603
https://www.iter.org
https://doi.org/10.1016/S0010-4655(00)00228-9
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://doi.org/10.1002/cpe.5547
https://github.com/openPMD
https://doi.org/10.3847/1538-4357/aac2da
https://doi.org/10.3847/1538-4357/aac2da
http://dx.doi.org/10.3847/1538-4357/aac2da
https://doi.org/10.1093/mnras/stx818


[31] A. W. Steiner, M. Hempel, and T. Fischer, “Core-collapse Supernova Equations of State Based on
Neutron Star Observations,” The Astrophysical Journal, vol. 774, 17, p. 17, Sep. 2013. doi: 10.1088/
0004-637X/774/1/17. arXiv: 1207.2184 [astro-ph.SR].

[32] J. D. Emberson, N. Frontiere, S. Habib, K. Heitmann, P. Larsen, H. Finkel, and A. Pope, “The borg
cube simulation: Cosmological hydrodynamics with CRK-SPH,” The Astrophysical Journal, vol. 877,
no. 2, p. 85, May 2019, issn: 1538-4357. doi: 10.3847/1538- 4357/ab1b31. [Online]. Available:
http://dx.doi.org/10.3847/1538-4357/ab1b31.

[33] N. Frontiere, C. D. Raskin, and J. M. Owen, “CRKSPH – a conservative reproducing kernel smoothed
particle hydrodynamics scheme,” Journal of Computational Physics, vol. 332, pp. 160–209, Mar. 2017,
issn: 0021-9991. doi: 10.1016/j.jcp.2016.12.004. [Online]. Available: http://dx.doi.org/10.
1016/j.jcp.2016.12.004.

[34] S. Wiederhorn, “Subcritical crack growth,” in Concise Encyclopedia of Advanced Ceramic Materials,
R. BROOK, Ed., Oxford: Pergamon, 1991, pp. 461–466, isbn: 978-0-08-034720-2. doi: https://doi.
org/10.1016/B978-0-08-034720-2.50126-X. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/B978008034720250126X.

[35] S. D. Walsh, H. E. Mason, W. L. D. Frane, and S. A. Carroll, “Experimental calibration of a numerical
model describing the alteration of cement/caprock interfaces by carbonated brine,” International
Journal of Greenhouse Gas Control, vol. 20, pp. 176–188, 2014), doi = doi:10.1016/j.ijggc.2014.01.004.

[36] M. Schanen, F. Gilbert, C. G. Petra, and M. Anitescu, “Toward multiperiod ac-based contingency
constrained optimal power flow at large scale,” in 2018 Power Systems Computation Conference (PSCC),
IEEE, 2018, pp. 1–7.
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[66] A. Azad, A. Buluç, X. S. Li, X. Wang, and J. Langguth, “A distributed-memory algorithm for computing
a heavy-weight perfect matching on bipartite graphs,” SIAM Journal on Scientific Computing, vol. 42,
no. 4, pp. C143–C168, 2020.

[67] S. Acer, E. G. Boman, and S. Rajamanickam, “SPHYNX: Spectral partitioning for hybrid and axelerator-
enabled systems,” in 2020 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2020, pp. 440–449.

[68] M. Minutoli, M. Drocco, M. Halappanavar, A. Tumeo, and A. Kalyanaraman, “Curipples: Influence
maximization on multi-gpu systems,” in Proceedings of the 34th ACM International Conference on
Supercomputing, ser. ICS ’20, Barcelona, Spain: Association for Computing Machinery, 2020, isbn:
9781450379830. doi: 10.1145/3392717.3392750. [Online]. Available: https://doi.org/10.1145/
3392717.3392750.

[69] M. Minutoli, P. Sambaturu, M. Halappanavar, A. Tumeo, A. Kalyanaraman, and A. K. Vullikanti,
“Preempt: Scalable epidemic interventions using submodular optimization on multi-gpu systems,” in
2020 SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), Los Alamitos, CA, USA: IEEE Computer Society, Nov. 2020, pp. 765–779. doi: 10.
1109/SC41405.2020.00059. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
SC41405.2020.00059.

Exascale Computing Project (ECP) 201 ECP-U-AD-RPT 2021 00208

https://doi.org/10.1145/3392717.3392750
https://doi.org/10.1145/3392717.3392750
https://doi.org/10.1145/3392717.3392750
https://doi.org/10.1109/SC41405.2020.00059
https://doi.org/10.1109/SC41405.2020.00059
https://doi.ieeecomputersociety.org/10.1109/SC41405.2020.00059
https://doi.ieeecomputersociety.org/10.1109/SC41405.2020.00059


A. APPLICATION CODE SUMMARY

Table A.1 gives a brief summary of the codes used by AD Application projects, the primary languages and
their strategy for utilizing the GPUs.

Table A.1: AD application codes.

Application project Code Main language GPU programming model

ExaStar FLASH Fortran OpenMP
ExaStar CASTRO Fortran, C++ OpenMP, OpenACC
EQSIM SW4 C++ RAJA
ExaSky HACC C++ CUDA, OpenCL
ExaSky CRK-HACC C++ CUDA, OpenCL
ExaSky Nyx C++ AMReX
Subsurface Chombo-Crunch C++ PROTO, UPC++

Subsurface GEOSX C++ RAJA
E3SM-MMF E3SM Fortran OpenACC, moving to OpenMP
Combustion-PELE PeleC C++ CUDA, OpenACC
Combustion-PELE PeleLM C++ CUDA, OpenACC
WarpX WarpX + PICSAR C++ AMReX abstractions
ExaSMR Nek5000 Fortran OpenACC
ExaSMR NekRS C++ libParanumal (OCCA)
ExaSMR OpenMC C++ OpenMP, OpenCL or SYCL
ExaSMR Shift C++ CUDA
WDMApp GENE Fortran OpenMP
WDMApp GEM Fortran OpenACC
WDMApp XGC C++ OpenMP, OpenACC
MFIX-Exa MFIX-Exa C++ AMReX abstractions
ExaWind Nalu-Wind C++ Kokkos
ExaWind AMR-Wind C++ AMReX abstractions
ExaWind OpenFAST Fortran 90 N/A
ExaBiome MetaHipMer C++ UPC++

ExaBiome GOTTCHA C++ OpenMP, HIP, SYCL
ExaBiome HipMCL C++ OpenMP, HIP, SYCL
ExaFEL M-TIP C++ CUDA, HIP, OpenCL
ExaFEL PSANA C++ Legion
CANDLE CANDLE Python TensorFlow, PyTorch
ExaSGD GridPACK C++

ExaSGD PIPS C++ RAJA or Kokkos
ExaSGD StructJuMP Julia
QMCPACK QMCPACK C++ OpenMP
ExaAM MEUMAPPS-SS Fortran OpenMP, OpenACC
ExaAM ExaConstit C++ MFEM
ExaAM TruchasPBF Fortran AMReX
ExaAM Diablo Fortran OpenMP
ExaAM ExaCA C++ Kokkos
NWChemEx NWChemEx C++ CUDA, Kokkos
LatticeQCD Chroma C++ Kokkos
LatticeQCD CPS C++ GRID library
LatticeQCD MILC C GRID library
GAMESS GAMESS Fortran libcchem, libaccint
GAMESS libcchem C++ libaccint
EXAALT ParSplice C++ N/A
EXAALT LAMMPS C++ Kokkos
EXAALT SNAP C++ Kokkos
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